HyperionSolarNet: Solar Panel Detection from Aerial Images

With the effects of global climate change impacting the world, collective efforts are needed to reduce greenhouse gas emissions. The energy sector is the single largest contributor to climate change and many efforts are focused on reducing dependence on carbon-emitting power plants and moving to ren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
Hauptverfasser: Parhar, Poonam, Ryan Sawasaki, Todeschini, Alberto, Colorado Reed, Vahabi, Hossein, Nusaputra, Nathan, Vergara, Felipe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Parhar, Poonam
Ryan Sawasaki
Todeschini, Alberto
Colorado Reed
Vahabi, Hossein
Nusaputra, Nathan
Vergara, Felipe
description With the effects of global climate change impacting the world, collective efforts are needed to reduce greenhouse gas emissions. The energy sector is the single largest contributor to climate change and many efforts are focused on reducing dependence on carbon-emitting power plants and moving to renewable energy sources, such as solar power. A comprehensive database of the location of solar panels is important to assist analysts and policymakers in defining strategies for further expansion of solar energy. In this paper we focus on creating a world map of solar panels. We identify locations and total surface area of solar panels within a given geographic area. We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery. The framework, which consists of a two-branch model using an image classifier in tandem with a semantic segmentation model, is trained on our created dataset of satellite images. Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2617597890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617597890</sourcerecordid><originalsourceid>FETCH-proquest_journals_26175978903</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8qgsSC3KzM8Lzs9JLPJLLbFSALMUAhLzUnMUXFJLUpNLgNIKaUX5uQqOQKWJOQqeuYnpqcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGZobmppbmFpYEycKgCayDaD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617597890</pqid></control><display><type>article</type><title>HyperionSolarNet: Solar Panel Detection from Aerial Images</title><source>Free E- Journals</source><creator>Parhar, Poonam ; Ryan Sawasaki ; Todeschini, Alberto ; Colorado Reed ; Vahabi, Hossein ; Nusaputra, Nathan ; Vergara, Felipe</creator><creatorcontrib>Parhar, Poonam ; Ryan Sawasaki ; Todeschini, Alberto ; Colorado Reed ; Vahabi, Hossein ; Nusaputra, Nathan ; Vergara, Felipe</creatorcontrib><description>With the effects of global climate change impacting the world, collective efforts are needed to reduce greenhouse gas emissions. The energy sector is the single largest contributor to climate change and many efforts are focused on reducing dependence on carbon-emitting power plants and moving to renewable energy sources, such as solar power. A comprehensive database of the location of solar panels is important to assist analysts and policymakers in defining strategies for further expansion of solar energy. In this paper we focus on creating a world map of solar panels. We identify locations and total surface area of solar panels within a given geographic area. We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery. The framework, which consists of a two-branch model using an image classifier in tandem with a semantic segmentation model, is trained on our created dataset of satellite images. Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alternative energy sources ; Climate change ; Energy industry ; Greenhouse gases ; Image segmentation ; Machine learning ; Photovoltaic cells ; Power plants ; Renewable energy sources ; Satellite imagery ; Solar energy ; Solar panels ; Surface area</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Parhar, Poonam</creatorcontrib><creatorcontrib>Ryan Sawasaki</creatorcontrib><creatorcontrib>Todeschini, Alberto</creatorcontrib><creatorcontrib>Colorado Reed</creatorcontrib><creatorcontrib>Vahabi, Hossein</creatorcontrib><creatorcontrib>Nusaputra, Nathan</creatorcontrib><creatorcontrib>Vergara, Felipe</creatorcontrib><title>HyperionSolarNet: Solar Panel Detection from Aerial Images</title><title>arXiv.org</title><description>With the effects of global climate change impacting the world, collective efforts are needed to reduce greenhouse gas emissions. The energy sector is the single largest contributor to climate change and many efforts are focused on reducing dependence on carbon-emitting power plants and moving to renewable energy sources, such as solar power. A comprehensive database of the location of solar panels is important to assist analysts and policymakers in defining strategies for further expansion of solar energy. In this paper we focus on creating a world map of solar panels. We identify locations and total surface area of solar panels within a given geographic area. We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery. The framework, which consists of a two-branch model using an image classifier in tandem with a semantic segmentation model, is trained on our created dataset of satellite images. Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.</description><subject>Alternative energy sources</subject><subject>Climate change</subject><subject>Energy industry</subject><subject>Greenhouse gases</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Photovoltaic cells</subject><subject>Power plants</subject><subject>Renewable energy sources</subject><subject>Satellite imagery</subject><subject>Solar energy</subject><subject>Solar panels</subject><subject>Surface area</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8qgsSC3KzM8Lzs9JLPJLLbFSALMUAhLzUnMUXFJLUpNLgNIKaUX5uQqOQKWJOQqeuYnpqcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGZobmppbmFpYEycKgCayDaD</recordid><startdate>20220106</startdate><enddate>20220106</enddate><creator>Parhar, Poonam</creator><creator>Ryan Sawasaki</creator><creator>Todeschini, Alberto</creator><creator>Colorado Reed</creator><creator>Vahabi, Hossein</creator><creator>Nusaputra, Nathan</creator><creator>Vergara, Felipe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220106</creationdate><title>HyperionSolarNet: Solar Panel Detection from Aerial Images</title><author>Parhar, Poonam ; Ryan Sawasaki ; Todeschini, Alberto ; Colorado Reed ; Vahabi, Hossein ; Nusaputra, Nathan ; Vergara, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26175978903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Climate change</topic><topic>Energy industry</topic><topic>Greenhouse gases</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Photovoltaic cells</topic><topic>Power plants</topic><topic>Renewable energy sources</topic><topic>Satellite imagery</topic><topic>Solar energy</topic><topic>Solar panels</topic><topic>Surface area</topic><toplevel>online_resources</toplevel><creatorcontrib>Parhar, Poonam</creatorcontrib><creatorcontrib>Ryan Sawasaki</creatorcontrib><creatorcontrib>Todeschini, Alberto</creatorcontrib><creatorcontrib>Colorado Reed</creatorcontrib><creatorcontrib>Vahabi, Hossein</creatorcontrib><creatorcontrib>Nusaputra, Nathan</creatorcontrib><creatorcontrib>Vergara, Felipe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parhar, Poonam</au><au>Ryan Sawasaki</au><au>Todeschini, Alberto</au><au>Colorado Reed</au><au>Vahabi, Hossein</au><au>Nusaputra, Nathan</au><au>Vergara, Felipe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HyperionSolarNet: Solar Panel Detection from Aerial Images</atitle><jtitle>arXiv.org</jtitle><date>2022-01-06</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>With the effects of global climate change impacting the world, collective efforts are needed to reduce greenhouse gas emissions. The energy sector is the single largest contributor to climate change and many efforts are focused on reducing dependence on carbon-emitting power plants and moving to renewable energy sources, such as solar power. A comprehensive database of the location of solar panels is important to assist analysts and policymakers in defining strategies for further expansion of solar energy. In this paper we focus on creating a world map of solar panels. We identify locations and total surface area of solar panels within a given geographic area. We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery. The framework, which consists of a two-branch model using an image classifier in tandem with a semantic segmentation model, is trained on our created dataset of satellite images. Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2617597890
source Free E- Journals
subjects Alternative energy sources
Climate change
Energy industry
Greenhouse gases
Image segmentation
Machine learning
Photovoltaic cells
Power plants
Renewable energy sources
Satellite imagery
Solar energy
Solar panels
Surface area
title HyperionSolarNet: Solar Panel Detection from Aerial Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HyperionSolarNet:%20Solar%20Panel%20Detection%20from%20Aerial%20Images&rft.jtitle=arXiv.org&rft.au=Parhar,%20Poonam&rft.date=2022-01-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2617597890%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617597890&rft_id=info:pmid/&rfr_iscdi=true