Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials

High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2022-03, Vol.105 (3), p.2105-2115
Hauptverfasser: Zvonareva, Inna A., Kasyanova, Anna V., Tarutin, Artem P., Vdovin, Gennady K., Lyagaeva, Julia G., Medvedev, Dmitry A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2115
container_issue 3
container_start_page 2105
container_title Journal of the American Ceramic Society
container_volume 105
creator Zvonareva, Inna A.
Kasyanova, Anna V.
Tarutin, Artem P.
Vdovin, Gennady K.
Lyagaeva, Julia G.
Medvedev, Dmitry A.
description High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr‐ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X‐ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain‐boundary conductivities. The complex analysis of the obtained data shows that a low‐level substitution of Zr4+‐ with Sn4+‐ions is a competent approach for designing new proton‐conducting electrolytes attractive for high‐temperature applications.
doi_str_mv 10.1111/jace.18224
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2617576497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617576497</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2254-72123e31f09f485c50468ff5c78acce56c351525354e2f13574e25fb5db4eb963</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqWw4QSRWCf4NXksS1VeqtRFYcPGclwbEtok2I5Qdz0CElfhHByiJ8Ftmc0_j18zow-hS4ITEuK6lkonJKeUH6EBASAxLUh6jAYYYxpnOcWn6My5OpSkyPkAvU-aN9kovYi8lY3rWuujzradtr7SLmpNNG-2my_Xl85XvvfBGMa-3TVV2yx65avmNbqRLxYn-VzhhM7YdvP9-xMpbeWqUtFKem0ruXTn6MQE0Rf_OkTPt5On8X08nd09jEfTuKMUeJxRQplmxODC8BwUYJ7mxoDKcqmUhlQxIECBAdfUEAZZUDAlLEquyyJlQ3R12Bs-_ei186Jue9uEk4KmJIMs5UUWXOTg-qyWei06W62kXQuCxY6k2JEUe5LicTSe7DP2BzKEbFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617576497</pqid></control><display><type>article</type><title>Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zvonareva, Inna A. ; Kasyanova, Anna V. ; Tarutin, Artem P. ; Vdovin, Gennady K. ; Lyagaeva, Julia G. ; Medvedev, Dmitry A.</creator><creatorcontrib>Zvonareva, Inna A. ; Kasyanova, Anna V. ; Tarutin, Artem P. ; Vdovin, Gennady K. ; Lyagaeva, Julia G. ; Medvedev, Dmitry A.</creatorcontrib><description>High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr‐ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X‐ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain‐boundary conductivities. The complex analysis of the obtained data shows that a low‐level substitution of Zr4+‐ with Sn4+‐ions is a competent approach for designing new proton‐conducting electrolytes attractive for high‐temperature applications.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18224</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Barium zirconates ; BaZrO3 ; Ceramic powders ; Conduction ; Conductors ; Crystal structure ; electrical conductivity ; Electrical resistivity ; Electrolytes ; Grain growth ; Grain size ; hydration ; Ion currents ; PCFCs ; perovskite ; Perovskite structure ; Perovskites ; proton transport ; Protons ; Substitutes ; Thermodynamic properties ; Tin ; Transport properties ; Zirconates ; Zirconium</subject><ispartof>Journal of the American Ceramic Society, 2022-03, Vol.105 (3), p.2105-2115</ispartof><rights>2021 The American Ceramic Society</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5636-6499 ; 0000-0003-4496-3768 ; 0000-0003-1660-6712 ; 0000-0002-9793-1375 ; 0000-0001-6653-5065 ; 0000-0002-3662-6051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18224$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18224$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zvonareva, Inna A.</creatorcontrib><creatorcontrib>Kasyanova, Anna V.</creatorcontrib><creatorcontrib>Tarutin, Artem P.</creatorcontrib><creatorcontrib>Vdovin, Gennady K.</creatorcontrib><creatorcontrib>Lyagaeva, Julia G.</creatorcontrib><creatorcontrib>Medvedev, Dmitry A.</creatorcontrib><title>Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials</title><title>Journal of the American Ceramic Society</title><description>High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr‐ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X‐ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain‐boundary conductivities. The complex analysis of the obtained data shows that a low‐level substitution of Zr4+‐ with Sn4+‐ions is a competent approach for designing new proton‐conducting electrolytes attractive for high‐temperature applications.</description><subject>Barium zirconates</subject><subject>BaZrO3</subject><subject>Ceramic powders</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Crystal structure</subject><subject>electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>hydration</subject><subject>Ion currents</subject><subject>PCFCs</subject><subject>perovskite</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>proton transport</subject><subject>Protons</subject><subject>Substitutes</subject><subject>Thermodynamic properties</subject><subject>Tin</subject><subject>Transport properties</subject><subject>Zirconates</subject><subject>Zirconium</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhi0EEqWw4QSRWCf4NXksS1VeqtRFYcPGclwbEtok2I5Qdz0CElfhHByiJ8Ftmc0_j18zow-hS4ITEuK6lkonJKeUH6EBASAxLUh6jAYYYxpnOcWn6My5OpSkyPkAvU-aN9kovYi8lY3rWuujzradtr7SLmpNNG-2my_Xl85XvvfBGMa-3TVV2yx65avmNbqRLxYn-VzhhM7YdvP9-xMpbeWqUtFKem0ruXTn6MQE0Rf_OkTPt5On8X08nd09jEfTuKMUeJxRQplmxODC8BwUYJ7mxoDKcqmUhlQxIECBAdfUEAZZUDAlLEquyyJlQ3R12Bs-_ei186Jue9uEk4KmJIMs5UUWXOTg-qyWei06W62kXQuCxY6k2JEUe5LicTSe7DP2BzKEbFc</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Zvonareva, Inna A.</creator><creator>Kasyanova, Anna V.</creator><creator>Tarutin, Artem P.</creator><creator>Vdovin, Gennady K.</creator><creator>Lyagaeva, Julia G.</creator><creator>Medvedev, Dmitry A.</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5636-6499</orcidid><orcidid>https://orcid.org/0000-0003-4496-3768</orcidid><orcidid>https://orcid.org/0000-0003-1660-6712</orcidid><orcidid>https://orcid.org/0000-0002-9793-1375</orcidid><orcidid>https://orcid.org/0000-0001-6653-5065</orcidid><orcidid>https://orcid.org/0000-0002-3662-6051</orcidid></search><sort><creationdate>202203</creationdate><title>Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials</title><author>Zvonareva, Inna A. ; Kasyanova, Anna V. ; Tarutin, Artem P. ; Vdovin, Gennady K. ; Lyagaeva, Julia G. ; Medvedev, Dmitry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2254-72123e31f09f485c50468ff5c78acce56c351525354e2f13574e25fb5db4eb963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barium zirconates</topic><topic>BaZrO3</topic><topic>Ceramic powders</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Crystal structure</topic><topic>electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>hydration</topic><topic>Ion currents</topic><topic>PCFCs</topic><topic>perovskite</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>proton transport</topic><topic>Protons</topic><topic>Substitutes</topic><topic>Thermodynamic properties</topic><topic>Tin</topic><topic>Transport properties</topic><topic>Zirconates</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zvonareva, Inna A.</creatorcontrib><creatorcontrib>Kasyanova, Anna V.</creatorcontrib><creatorcontrib>Tarutin, Artem P.</creatorcontrib><creatorcontrib>Vdovin, Gennady K.</creatorcontrib><creatorcontrib>Lyagaeva, Julia G.</creatorcontrib><creatorcontrib>Medvedev, Dmitry A.</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zvonareva, Inna A.</au><au>Kasyanova, Anna V.</au><au>Tarutin, Artem P.</au><au>Vdovin, Gennady K.</au><au>Lyagaeva, Julia G.</au><au>Medvedev, Dmitry A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-03</date><risdate>2022</risdate><volume>105</volume><issue>3</issue><spage>2105</spage><epage>2115</epage><pages>2105-2115</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr‐ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X‐ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain‐boundary conductivities. The complex analysis of the obtained data shows that a low‐level substitution of Zr4+‐ with Sn4+‐ions is a competent approach for designing new proton‐conducting electrolytes attractive for high‐temperature applications.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18224</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5636-6499</orcidid><orcidid>https://orcid.org/0000-0003-4496-3768</orcidid><orcidid>https://orcid.org/0000-0003-1660-6712</orcidid><orcidid>https://orcid.org/0000-0002-9793-1375</orcidid><orcidid>https://orcid.org/0000-0001-6653-5065</orcidid><orcidid>https://orcid.org/0000-0002-3662-6051</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-03, Vol.105 (3), p.2105-2115
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2617576497
source Wiley Online Library Journals Frontfile Complete
subjects Barium zirconates
BaZrO3
Ceramic powders
Conduction
Conductors
Crystal structure
electrical conductivity
Electrical resistivity
Electrolytes
Grain growth
Grain size
hydration
Ion currents
PCFCs
perovskite
Perovskite structure
Perovskites
proton transport
Protons
Substitutes
Thermodynamic properties
Tin
Transport properties
Zirconates
Zirconium
title Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20transport%20properties%20of%20Sn%E2%80%90substituted%20proton%E2%80%90conducting%20BaZr0.8Sc0.2O3%E2%80%93%CE%B4%20ceramic%20materials&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Zvonareva,%20Inna%20A.&rft.date=2022-03&rft.volume=105&rft.issue=3&rft.spage=2105&rft.epage=2115&rft.pages=2105-2115&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18224&rft_dat=%3Cproquest_wiley%3E2617576497%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617576497&rft_id=info:pmid/&rfr_iscdi=true