Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials
High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity....
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2022-03, Vol.105 (3), p.2105-2115 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2115 |
---|---|
container_issue | 3 |
container_start_page | 2105 |
container_title | Journal of the American Ceramic Society |
container_volume | 105 |
creator | Zvonareva, Inna A. Kasyanova, Anna V. Tarutin, Artem P. Vdovin, Gennady K. Lyagaeva, Julia G. Medvedev, Dmitry A. |
description | High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr‐ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X‐ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain‐boundary conductivities. The complex analysis of the obtained data shows that a low‐level substitution of Zr4+‐ with Sn4+‐ions is a competent approach for designing new proton‐conducting electrolytes attractive for high‐temperature applications. |
doi_str_mv | 10.1111/jace.18224 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2617576497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617576497</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2254-72123e31f09f485c50468ff5c78acce56c351525354e2f13574e25fb5db4eb963</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqWw4QSRWCf4NXksS1VeqtRFYcPGclwbEtok2I5Qdz0CElfhHByiJ8Ftmc0_j18zow-hS4ITEuK6lkonJKeUH6EBASAxLUh6jAYYYxpnOcWn6My5OpSkyPkAvU-aN9kovYi8lY3rWuujzradtr7SLmpNNG-2my_Xl85XvvfBGMa-3TVV2yx65avmNbqRLxYn-VzhhM7YdvP9-xMpbeWqUtFKem0ruXTn6MQE0Rf_OkTPt5On8X08nd09jEfTuKMUeJxRQplmxODC8BwUYJ7mxoDKcqmUhlQxIECBAdfUEAZZUDAlLEquyyJlQ3R12Bs-_ei186Jue9uEk4KmJIMs5UUWXOTg-qyWei06W62kXQuCxY6k2JEUe5LicTSe7DP2BzKEbFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617576497</pqid></control><display><type>article</type><title>Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zvonareva, Inna A. ; Kasyanova, Anna V. ; Tarutin, Artem P. ; Vdovin, Gennady K. ; Lyagaeva, Julia G. ; Medvedev, Dmitry A.</creator><creatorcontrib>Zvonareva, Inna A. ; Kasyanova, Anna V. ; Tarutin, Artem P. ; Vdovin, Gennady K. ; Lyagaeva, Julia G. ; Medvedev, Dmitry A.</creatorcontrib><description>High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr‐ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X‐ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain‐boundary conductivities. The complex analysis of the obtained data shows that a low‐level substitution of Zr4+‐ with Sn4+‐ions is a competent approach for designing new proton‐conducting electrolytes attractive for high‐temperature applications.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18224</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Barium zirconates ; BaZrO3 ; Ceramic powders ; Conduction ; Conductors ; Crystal structure ; electrical conductivity ; Electrical resistivity ; Electrolytes ; Grain growth ; Grain size ; hydration ; Ion currents ; PCFCs ; perovskite ; Perovskite structure ; Perovskites ; proton transport ; Protons ; Substitutes ; Thermodynamic properties ; Tin ; Transport properties ; Zirconates ; Zirconium</subject><ispartof>Journal of the American Ceramic Society, 2022-03, Vol.105 (3), p.2105-2115</ispartof><rights>2021 The American Ceramic Society</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5636-6499 ; 0000-0003-4496-3768 ; 0000-0003-1660-6712 ; 0000-0002-9793-1375 ; 0000-0001-6653-5065 ; 0000-0002-3662-6051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18224$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18224$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zvonareva, Inna A.</creatorcontrib><creatorcontrib>Kasyanova, Anna V.</creatorcontrib><creatorcontrib>Tarutin, Artem P.</creatorcontrib><creatorcontrib>Vdovin, Gennady K.</creatorcontrib><creatorcontrib>Lyagaeva, Julia G.</creatorcontrib><creatorcontrib>Medvedev, Dmitry A.</creatorcontrib><title>Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials</title><title>Journal of the American Ceramic Society</title><description>High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr‐ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X‐ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain‐boundary conductivities. The complex analysis of the obtained data shows that a low‐level substitution of Zr4+‐ with Sn4+‐ions is a competent approach for designing new proton‐conducting electrolytes attractive for high‐temperature applications.</description><subject>Barium zirconates</subject><subject>BaZrO3</subject><subject>Ceramic powders</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Crystal structure</subject><subject>electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>hydration</subject><subject>Ion currents</subject><subject>PCFCs</subject><subject>perovskite</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>proton transport</subject><subject>Protons</subject><subject>Substitutes</subject><subject>Thermodynamic properties</subject><subject>Tin</subject><subject>Transport properties</subject><subject>Zirconates</subject><subject>Zirconium</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhi0EEqWw4QSRWCf4NXksS1VeqtRFYcPGclwbEtok2I5Qdz0CElfhHByiJ8Ftmc0_j18zow-hS4ITEuK6lkonJKeUH6EBASAxLUh6jAYYYxpnOcWn6My5OpSkyPkAvU-aN9kovYi8lY3rWuujzradtr7SLmpNNG-2my_Xl85XvvfBGMa-3TVV2yx65avmNbqRLxYn-VzhhM7YdvP9-xMpbeWqUtFKem0ruXTn6MQE0Rf_OkTPt5On8X08nd09jEfTuKMUeJxRQplmxODC8BwUYJ7mxoDKcqmUhlQxIECBAdfUEAZZUDAlLEquyyJlQ3R12Bs-_ei186Jue9uEk4KmJIMs5UUWXOTg-qyWei06W62kXQuCxY6k2JEUe5LicTSe7DP2BzKEbFc</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Zvonareva, Inna A.</creator><creator>Kasyanova, Anna V.</creator><creator>Tarutin, Artem P.</creator><creator>Vdovin, Gennady K.</creator><creator>Lyagaeva, Julia G.</creator><creator>Medvedev, Dmitry A.</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5636-6499</orcidid><orcidid>https://orcid.org/0000-0003-4496-3768</orcidid><orcidid>https://orcid.org/0000-0003-1660-6712</orcidid><orcidid>https://orcid.org/0000-0002-9793-1375</orcidid><orcidid>https://orcid.org/0000-0001-6653-5065</orcidid><orcidid>https://orcid.org/0000-0002-3662-6051</orcidid></search><sort><creationdate>202203</creationdate><title>Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials</title><author>Zvonareva, Inna A. ; Kasyanova, Anna V. ; Tarutin, Artem P. ; Vdovin, Gennady K. ; Lyagaeva, Julia G. ; Medvedev, Dmitry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2254-72123e31f09f485c50468ff5c78acce56c351525354e2f13574e25fb5db4eb963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barium zirconates</topic><topic>BaZrO3</topic><topic>Ceramic powders</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Crystal structure</topic><topic>electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>hydration</topic><topic>Ion currents</topic><topic>PCFCs</topic><topic>perovskite</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>proton transport</topic><topic>Protons</topic><topic>Substitutes</topic><topic>Thermodynamic properties</topic><topic>Tin</topic><topic>Transport properties</topic><topic>Zirconates</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zvonareva, Inna A.</creatorcontrib><creatorcontrib>Kasyanova, Anna V.</creatorcontrib><creatorcontrib>Tarutin, Artem P.</creatorcontrib><creatorcontrib>Vdovin, Gennady K.</creatorcontrib><creatorcontrib>Lyagaeva, Julia G.</creatorcontrib><creatorcontrib>Medvedev, Dmitry A.</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zvonareva, Inna A.</au><au>Kasyanova, Anna V.</au><au>Tarutin, Artem P.</au><au>Vdovin, Gennady K.</au><au>Lyagaeva, Julia G.</au><au>Medvedev, Dmitry A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-03</date><risdate>2022</risdate><volume>105</volume><issue>3</issue><spage>2105</spage><epage>2115</epage><pages>2105-2115</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>High‐temperature proton conductors based on acceptor‐doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr‐ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X‐ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain‐boundary conductivities. The complex analysis of the obtained data shows that a low‐level substitution of Zr4+‐ with Sn4+‐ions is a competent approach for designing new proton‐conducting electrolytes attractive for high‐temperature applications.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18224</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5636-6499</orcidid><orcidid>https://orcid.org/0000-0003-4496-3768</orcidid><orcidid>https://orcid.org/0000-0003-1660-6712</orcidid><orcidid>https://orcid.org/0000-0002-9793-1375</orcidid><orcidid>https://orcid.org/0000-0001-6653-5065</orcidid><orcidid>https://orcid.org/0000-0002-3662-6051</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2022-03, Vol.105 (3), p.2105-2115 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2617576497 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Barium zirconates BaZrO3 Ceramic powders Conduction Conductors Crystal structure electrical conductivity Electrical resistivity Electrolytes Grain growth Grain size hydration Ion currents PCFCs perovskite Perovskite structure Perovskites proton transport Protons Substitutes Thermodynamic properties Tin Transport properties Zirconates Zirconium |
title | Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20transport%20properties%20of%20Sn%E2%80%90substituted%20proton%E2%80%90conducting%20BaZr0.8Sc0.2O3%E2%80%93%CE%B4%20ceramic%20materials&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Zvonareva,%20Inna%20A.&rft.date=2022-03&rft.volume=105&rft.issue=3&rft.spage=2105&rft.epage=2115&rft.pages=2105-2115&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18224&rft_dat=%3Cproquest_wiley%3E2617576497%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617576497&rft_id=info:pmid/&rfr_iscdi=true |