DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features
Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g., interference of background clutter, scale sensitivity and missing boundary details of blur regions. To deal with these issues, we propose a deep neural network which recurrently...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-02, Vol.44 (2), p.955-968 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 968 |
---|---|
container_issue | 2 |
container_start_page | 955 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Tang, Chang Liu, Xinwang Zheng, Xiao Li, Wanqing Xiong, Jian Wang, Lizhe Zomaya, Albert Y. Longo, Antonella |
description | Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g., interference of background clutter, scale sensitivity and missing boundary details of blur regions. To deal with these issues, we propose a deep neural network which recurrently fuses and refines multi-scale deep features (DeFusionNet) for defocus blur detection. We first fuse the features from different layers of FCN as shallow features and semantic features, respectively. Then, the fused shallow features are propagated to deep layers for refining the details of detected defocus blur regions, and the fused semantic features are propagated to shallow layers to assist in better locating blur regions. The fusion and refinement are carried out recurrently. In order to narrow the gap between low-level and high-level features, we embed a feature adaptation module before feature propagating to exploit the complementary information as well as reduce the contradictory response of different feature layers. Since different feature channels are with different extents of discrimination for detecting blur regions, we design a channel attention module to select discriminative features for feature refinement. Finally, the output of each layer at last recurrent step are fused to obtain the final result. We collect a new dataset consists of various challenging images and their pixel-wise annotations for promoting further study. Extensive experiments on two commonly used datasets and our newly collected one are conducted to demonstrate both the efficacy and efficiency of DeFusionNet. |
doi_str_mv | 10.1109/TPAMI.2020.3014629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2617492222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9161280</ieee_id><sourcerecordid>2431809587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-4728719cfbaa9fbcb4f2c3704b0a9a4a0df493b360e72be02e430d5aadc394fd3</originalsourceid><addsrcrecordid>eNpdkUtPGzEUha2qqAToH2ilaiQ2bCZcP-bh7oAQQOIlSNeWx3NdGU1mgj1G4t_jkMACb6zr852jax1CflGYUgryeHF_cnM1ZcBgyoGKkslvZEIllzkvuPxOJkBLltc1q3fJXghPkKAC-A-yy1lVSKhhQlYznMfghv72fPE3m6EdTAzZaRd9GkY0Y5KyF6ezBzTRe-zH7jVbO_r_me7b9Gxdvx5mLhjvlq7Xo3vB7CZ2o8sfje4wBeEqm6Meo8dwQHas7gL-3N775N_8fHF2mV_fXVydnVznhhd0zEXF6opKYxutpW1MIywzvALRgJZaaGitkLzhJWDFGgSGgkNbaN0aLoVt-T452uSu_PAcMYxqmTbErtM9DjEoJjitQRZ1ldDDL-jTEH2ftlOspJWQLJ1EsQ1l_BCCR6tW6b_avyoKat2Heu9DrftQ2z6S6c82OjZLbD8tHwUk4PcGcIj4KUtaUpbUN61Hj00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617492222</pqid></control><display><type>article</type><title>DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Chang ; Liu, Xinwang ; Zheng, Xiao ; Li, Wanqing ; Xiong, Jian ; Wang, Lizhe ; Zomaya, Albert Y. ; Longo, Antonella</creator><creatorcontrib>Tang, Chang ; Liu, Xinwang ; Zheng, Xiao ; Li, Wanqing ; Xiong, Jian ; Wang, Lizhe ; Zomaya, Albert Y. ; Longo, Antonella</creatorcontrib><description>Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g., interference of background clutter, scale sensitivity and missing boundary details of blur regions. To deal with these issues, we propose a deep neural network which recurrently fuses and refines multi-scale deep features (DeFusionNet) for defocus blur detection. We first fuse the features from different layers of FCN as shallow features and semantic features, respectively. Then, the fused shallow features are propagated to deep layers for refining the details of detected defocus blur regions, and the fused semantic features are propagated to shallow layers to assist in better locating blur regions. The fusion and refinement are carried out recurrently. In order to narrow the gap between low-level and high-level features, we embed a feature adaptation module before feature propagating to exploit the complementary information as well as reduce the contradictory response of different feature layers. Since different feature channels are with different extents of discrimination for detecting blur regions, we design a channel attention module to select discriminative features for feature refinement. Finally, the output of each layer at last recurrent step are fused to obtain the final result. We collect a new dataset consists of various challenging images and their pixel-wise annotations for promoting further study. Extensive experiments on two commonly used datasets and our newly collected one are conducted to demonstrate both the efficacy and efficiency of DeFusionNet.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.3014629</identifier><identifier>PMID: 32759080</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Artificial neural networks ; channel attention ; Clutter ; Datasets ; Defocus blur detection ; Feature extraction ; feature fusing ; Fuses ; Image edge detection ; Machine learning ; Modules ; multi-scale features ; Neural networks ; Semantics ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.955-968</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-4728719cfbaa9fbcb4f2c3704b0a9a4a0df493b360e72be02e430d5aadc394fd3</citedby><cites>FETCH-LOGICAL-c351t-4728719cfbaa9fbcb4f2c3704b0a9a4a0df493b360e72be02e430d5aadc394fd3</cites><orcidid>0000-0001-9066-1475 ; 0000-0002-6902-0160 ; 0000-0002-4427-2687 ; 0000-0003-2766-0845 ; 0000-0002-6515-7696 ; 0000-0002-3090-1059 ; 0000-0002-8744-8144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9161280$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9161280$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32759080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Chang</creatorcontrib><creatorcontrib>Liu, Xinwang</creatorcontrib><creatorcontrib>Zheng, Xiao</creatorcontrib><creatorcontrib>Li, Wanqing</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Wang, Lizhe</creatorcontrib><creatorcontrib>Zomaya, Albert Y.</creatorcontrib><creatorcontrib>Longo, Antonella</creatorcontrib><title>DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g., interference of background clutter, scale sensitivity and missing boundary details of blur regions. To deal with these issues, we propose a deep neural network which recurrently fuses and refines multi-scale deep features (DeFusionNet) for defocus blur detection. We first fuse the features from different layers of FCN as shallow features and semantic features, respectively. Then, the fused shallow features are propagated to deep layers for refining the details of detected defocus blur regions, and the fused semantic features are propagated to shallow layers to assist in better locating blur regions. The fusion and refinement are carried out recurrently. In order to narrow the gap between low-level and high-level features, we embed a feature adaptation module before feature propagating to exploit the complementary information as well as reduce the contradictory response of different feature layers. Since different feature channels are with different extents of discrimination for detecting blur regions, we design a channel attention module to select discriminative features for feature refinement. Finally, the output of each layer at last recurrent step are fused to obtain the final result. We collect a new dataset consists of various challenging images and their pixel-wise annotations for promoting further study. Extensive experiments on two commonly used datasets and our newly collected one are conducted to demonstrate both the efficacy and efficiency of DeFusionNet.</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>channel attention</subject><subject>Clutter</subject><subject>Datasets</subject><subject>Defocus blur detection</subject><subject>Feature extraction</subject><subject>feature fusing</subject><subject>Fuses</subject><subject>Image edge detection</subject><subject>Machine learning</subject><subject>Modules</subject><subject>multi-scale features</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtPGzEUha2qqAToH2ilaiQ2bCZcP-bh7oAQQOIlSNeWx3NdGU1mgj1G4t_jkMACb6zr852jax1CflGYUgryeHF_cnM1ZcBgyoGKkslvZEIllzkvuPxOJkBLltc1q3fJXghPkKAC-A-yy1lVSKhhQlYznMfghv72fPE3m6EdTAzZaRd9GkY0Y5KyF6ezBzTRe-zH7jVbO_r_me7b9Gxdvx5mLhjvlq7Xo3vB7CZ2o8sfje4wBeEqm6Meo8dwQHas7gL-3N775N_8fHF2mV_fXVydnVznhhd0zEXF6opKYxutpW1MIywzvALRgJZaaGitkLzhJWDFGgSGgkNbaN0aLoVt-T452uSu_PAcMYxqmTbErtM9DjEoJjitQRZ1ldDDL-jTEH2ftlOspJWQLJ1EsQ1l_BCCR6tW6b_avyoKat2Heu9DrftQ2z6S6c82OjZLbD8tHwUk4PcGcIj4KUtaUpbUN61Hj00</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Tang, Chang</creator><creator>Liu, Xinwang</creator><creator>Zheng, Xiao</creator><creator>Li, Wanqing</creator><creator>Xiong, Jian</creator><creator>Wang, Lizhe</creator><creator>Zomaya, Albert Y.</creator><creator>Longo, Antonella</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9066-1475</orcidid><orcidid>https://orcid.org/0000-0002-6902-0160</orcidid><orcidid>https://orcid.org/0000-0002-4427-2687</orcidid><orcidid>https://orcid.org/0000-0003-2766-0845</orcidid><orcidid>https://orcid.org/0000-0002-6515-7696</orcidid><orcidid>https://orcid.org/0000-0002-3090-1059</orcidid><orcidid>https://orcid.org/0000-0002-8744-8144</orcidid></search><sort><creationdate>20220201</creationdate><title>DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features</title><author>Tang, Chang ; Liu, Xinwang ; Zheng, Xiao ; Li, Wanqing ; Xiong, Jian ; Wang, Lizhe ; Zomaya, Albert Y. ; Longo, Antonella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-4728719cfbaa9fbcb4f2c3704b0a9a4a0df493b360e72be02e430d5aadc394fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>channel attention</topic><topic>Clutter</topic><topic>Datasets</topic><topic>Defocus blur detection</topic><topic>Feature extraction</topic><topic>feature fusing</topic><topic>Fuses</topic><topic>Image edge detection</topic><topic>Machine learning</topic><topic>Modules</topic><topic>multi-scale features</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Chang</creatorcontrib><creatorcontrib>Liu, Xinwang</creatorcontrib><creatorcontrib>Zheng, Xiao</creatorcontrib><creatorcontrib>Li, Wanqing</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Wang, Lizhe</creatorcontrib><creatorcontrib>Zomaya, Albert Y.</creatorcontrib><creatorcontrib>Longo, Antonella</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Chang</au><au>Liu, Xinwang</au><au>Zheng, Xiao</au><au>Li, Wanqing</au><au>Xiong, Jian</au><au>Wang, Lizhe</au><au>Zomaya, Albert Y.</au><au>Longo, Antonella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>44</volume><issue>2</issue><spage>955</spage><epage>968</epage><pages>955-968</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g., interference of background clutter, scale sensitivity and missing boundary details of blur regions. To deal with these issues, we propose a deep neural network which recurrently fuses and refines multi-scale deep features (DeFusionNet) for defocus blur detection. We first fuse the features from different layers of FCN as shallow features and semantic features, respectively. Then, the fused shallow features are propagated to deep layers for refining the details of detected defocus blur regions, and the fused semantic features are propagated to shallow layers to assist in better locating blur regions. The fusion and refinement are carried out recurrently. In order to narrow the gap between low-level and high-level features, we embed a feature adaptation module before feature propagating to exploit the complementary information as well as reduce the contradictory response of different feature layers. Since different feature channels are with different extents of discrimination for detecting blur regions, we design a channel attention module to select discriminative features for feature refinement. Finally, the output of each layer at last recurrent step are fused to obtain the final result. We collect a new dataset consists of various challenging images and their pixel-wise annotations for promoting further study. Extensive experiments on two commonly used datasets and our newly collected one are conducted to demonstrate both the efficacy and efficiency of DeFusionNet.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32759080</pmid><doi>10.1109/TPAMI.2020.3014629</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9066-1475</orcidid><orcidid>https://orcid.org/0000-0002-6902-0160</orcidid><orcidid>https://orcid.org/0000-0002-4427-2687</orcidid><orcidid>https://orcid.org/0000-0003-2766-0845</orcidid><orcidid>https://orcid.org/0000-0002-6515-7696</orcidid><orcidid>https://orcid.org/0000-0002-3090-1059</orcidid><orcidid>https://orcid.org/0000-0002-8744-8144</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.955-968 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2617492222 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Artificial neural networks channel attention Clutter Datasets Defocus blur detection Feature extraction feature fusing Fuses Image edge detection Machine learning Modules multi-scale features Neural networks Semantics Task analysis |
title | DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeFusionNET:%20Defocus%20Blur%20Detection%20via%20Recurrently%20Fusing%20and%20Refining%20Discriminative%20Multi-Scale%20Deep%20Features&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Tang,%20Chang&rft.date=2022-02-01&rft.volume=44&rft.issue=2&rft.spage=955&rft.epage=968&rft.pages=955-968&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.3014629&rft_dat=%3Cproquest_RIE%3E2431809587%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617492222&rft_id=info:pmid/32759080&rft_ieee_id=9161280&rfr_iscdi=true |