LWE from non-commutative group rings
The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2022, Vol.90 (1), p.239-263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | 1 |
container_start_page | 239 |
container_title | Designs, codes, and cryptography |
container_volume | 90 |
creator | Cheng, Qi Zhang, Jun Zhuang, Jincheng |
description | The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the LWE problem on group rings in this work. One can regard the Ring-LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups. In particular, we show how to build public key encryption schemes from dihedral group rings, while maintaining the efficiency of the Ring-LWE. We prove that the PKC system is semantically secure, by providing a reduction from the SIVP problem of group ring ideal lattice to the decisional group ring LWE problem. It turns out that irreducible representations of groups play important roles here. We believe that the introduction of the representation view point enriches the tool set for studying the Ring-LWE problem. |
doi_str_mv | 10.1007/s10623-021-00973-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617315486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617315486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ed0a32de66e88b7a445d379d17f8269c5e9ce002e410b5e9c21b916f923594e83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeCXqMzkyZpjrKsf2DBi-IxdNt06WKbmrSC397WCt48zQy894b3Y-wS4QYB9G1EUCQ4EHIAowVXRyxBOS1a5uqYJWBIcgSiU3YW4wEAUAAl7Hr7tknr4Nu08x0vfduOQzE0ny7dBz_2aWi6fTxnJ3XxHt3F71yx1_vNy_qRb58fntZ3W14KNAN3FRSCKqeUy_OdLrJMVkKbCnWdkzKldKZ0AOQyhN18EO4MqtqQkCZzuVixqyW3D_5jdHGwBz-GbnppSaEWKLNcTSpaVGXwMQZX2z40bRG-LIKdadiFhp1o2B8adjaJxRT7uZILf9H_uL4Bx3Bf8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617315486</pqid></control><display><type>article</type><title>LWE from non-commutative group rings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Qi ; Zhang, Jun ; Zhuang, Jincheng</creator><creatorcontrib>Cheng, Qi ; Zhang, Jun ; Zhuang, Jincheng</creatorcontrib><description>The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the LWE problem on group rings in this work. One can regard the Ring-LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups. In particular, we show how to build public key encryption schemes from dihedral group rings, while maintaining the efficiency of the Ring-LWE. We prove that the PKC system is semantically secure, by providing a reduction from the SIVP problem of group ring ideal lattice to the decisional group ring LWE problem. It turns out that irreducible representations of groups play important roles here. We believe that the introduction of the representation view point enriches the tool set for studying the Ring-LWE problem.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-021-00973-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptography ; Cryptology ; Discrete Mathematics in Computer Science ; Group theory ; Representations ; Rings (mathematics)</subject><ispartof>Designs, codes, and cryptography, 2022, Vol.90 (1), p.239-263</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ed0a32de66e88b7a445d379d17f8269c5e9ce002e410b5e9c21b916f923594e83</citedby><cites>FETCH-LOGICAL-c319t-ed0a32de66e88b7a445d379d17f8269c5e9ce002e410b5e9c21b916f923594e83</cites><orcidid>0000-0003-1159-7597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-021-00973-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-021-00973-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhuang, Jincheng</creatorcontrib><title>LWE from non-commutative group rings</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the LWE problem on group rings in this work. One can regard the Ring-LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups. In particular, we show how to build public key encryption schemes from dihedral group rings, while maintaining the efficiency of the Ring-LWE. We prove that the PKC system is semantically secure, by providing a reduction from the SIVP problem of group ring ideal lattice to the decisional group ring LWE problem. It turns out that irreducible representations of groups play important roles here. We believe that the introduction of the representation view point enriches the tool set for studying the Ring-LWE problem.</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Group theory</subject><subject>Representations</subject><subject>Rings (mathematics)</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFe_gKeCXqMzkyZpjrKsf2DBi-IxdNt06WKbmrSC397WCt48zQy894b3Y-wS4QYB9G1EUCQ4EHIAowVXRyxBOS1a5uqYJWBIcgSiU3YW4wEAUAAl7Hr7tknr4Nu08x0vfduOQzE0ny7dBz_2aWi6fTxnJ3XxHt3F71yx1_vNy_qRb58fntZ3W14KNAN3FRSCKqeUy_OdLrJMVkKbCnWdkzKldKZ0AOQyhN18EO4MqtqQkCZzuVixqyW3D_5jdHGwBz-GbnppSaEWKLNcTSpaVGXwMQZX2z40bRG-LIKdadiFhp1o2B8adjaJxRT7uZILf9H_uL4Bx3Bf8Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cheng, Qi</creator><creator>Zhang, Jun</creator><creator>Zhuang, Jincheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1159-7597</orcidid></search><sort><creationdate>2022</creationdate><title>LWE from non-commutative group rings</title><author>Cheng, Qi ; Zhang, Jun ; Zhuang, Jincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ed0a32de66e88b7a445d379d17f8269c5e9ce002e410b5e9c21b916f923594e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Group theory</topic><topic>Representations</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhuang, Jincheng</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Qi</au><au>Zhang, Jun</au><au>Zhuang, Jincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LWE from non-commutative group rings</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2022</date><risdate>2022</risdate><volume>90</volume><issue>1</issue><spage>239</spage><epage>263</epage><pages>239-263</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the LWE problem on group rings in this work. One can regard the Ring-LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups. In particular, we show how to build public key encryption schemes from dihedral group rings, while maintaining the efficiency of the Ring-LWE. We prove that the PKC system is semantically secure, by providing a reduction from the SIVP problem of group ring ideal lattice to the decisional group ring LWE problem. It turns out that irreducible representations of groups play important roles here. We believe that the introduction of the representation view point enriches the tool set for studying the Ring-LWE problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-021-00973-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1159-7597</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2022, Vol.90 (1), p.239-263 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_proquest_journals_2617315486 |
source | SpringerLink Journals - AutoHoldings |
subjects | Coding and Information Theory Computer Science Cryptography Cryptology Discrete Mathematics in Computer Science Group theory Representations Rings (mathematics) |
title | LWE from non-commutative group rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LWE%20from%20non-commutative%20group%20rings&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Cheng,%20Qi&rft.date=2022&rft.volume=90&rft.issue=1&rft.spage=239&rft.epage=263&rft.pages=239-263&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-021-00973-6&rft_dat=%3Cproquest_cross%3E2617315486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617315486&rft_id=info:pmid/&rfr_iscdi=true |