LWE from non-commutative group rings

The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2022, Vol.90 (1), p.239-263
Hauptverfasser: Cheng, Qi, Zhang, Jun, Zhuang, Jincheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 1
container_start_page 239
container_title Designs, codes, and cryptography
container_volume 90
creator Cheng, Qi
Zhang, Jun
Zhuang, Jincheng
description The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the LWE problem on group rings in this work. One can regard the Ring-LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups. In particular, we show how to build public key encryption schemes from dihedral group rings, while maintaining the efficiency of the Ring-LWE. We prove that the PKC system is semantically secure, by providing a reduction from the SIVP problem of group ring ideal lattice to the decisional group ring LWE problem. It turns out that irreducible representations of groups play important roles here. We believe that the introduction of the representation view point enriches the tool set for studying the Ring-LWE problem.
doi_str_mv 10.1007/s10623-021-00973-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617315486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617315486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ed0a32de66e88b7a445d379d17f8269c5e9ce002e410b5e9c21b916f923594e83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeCXqMzkyZpjrKsf2DBi-IxdNt06WKbmrSC397WCt48zQy894b3Y-wS4QYB9G1EUCQ4EHIAowVXRyxBOS1a5uqYJWBIcgSiU3YW4wEAUAAl7Hr7tknr4Nu08x0vfduOQzE0ny7dBz_2aWi6fTxnJ3XxHt3F71yx1_vNy_qRb58fntZ3W14KNAN3FRSCKqeUy_OdLrJMVkKbCnWdkzKldKZ0AOQyhN18EO4MqtqQkCZzuVixqyW3D_5jdHGwBz-GbnppSaEWKLNcTSpaVGXwMQZX2z40bRG-LIKdadiFhp1o2B8adjaJxRT7uZILf9H_uL4Bx3Bf8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617315486</pqid></control><display><type>article</type><title>LWE from non-commutative group rings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Qi ; Zhang, Jun ; Zhuang, Jincheng</creator><creatorcontrib>Cheng, Qi ; Zhang, Jun ; Zhuang, Jincheng</creatorcontrib><description>The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the LWE problem on group rings in this work. One can regard the Ring-LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups. In particular, we show how to build public key encryption schemes from dihedral group rings, while maintaining the efficiency of the Ring-LWE. We prove that the PKC system is semantically secure, by providing a reduction from the SIVP problem of group ring ideal lattice to the decisional group ring LWE problem. It turns out that irreducible representations of groups play important roles here. We believe that the introduction of the representation view point enriches the tool set for studying the Ring-LWE problem.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-021-00973-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptography ; Cryptology ; Discrete Mathematics in Computer Science ; Group theory ; Representations ; Rings (mathematics)</subject><ispartof>Designs, codes, and cryptography, 2022, Vol.90 (1), p.239-263</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ed0a32de66e88b7a445d379d17f8269c5e9ce002e410b5e9c21b916f923594e83</citedby><cites>FETCH-LOGICAL-c319t-ed0a32de66e88b7a445d379d17f8269c5e9ce002e410b5e9c21b916f923594e83</cites><orcidid>0000-0003-1159-7597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-021-00973-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-021-00973-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhuang, Jincheng</creatorcontrib><title>LWE from non-commutative group rings</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the LWE problem on group rings in this work. One can regard the Ring-LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups. In particular, we show how to build public key encryption schemes from dihedral group rings, while maintaining the efficiency of the Ring-LWE. We prove that the PKC system is semantically secure, by providing a reduction from the SIVP problem of group ring ideal lattice to the decisional group ring LWE problem. It turns out that irreducible representations of groups play important roles here. We believe that the introduction of the representation view point enriches the tool set for studying the Ring-LWE problem.</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Group theory</subject><subject>Representations</subject><subject>Rings (mathematics)</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFe_gKeCXqMzkyZpjrKsf2DBi-IxdNt06WKbmrSC397WCt48zQy894b3Y-wS4QYB9G1EUCQ4EHIAowVXRyxBOS1a5uqYJWBIcgSiU3YW4wEAUAAl7Hr7tknr4Nu08x0vfduOQzE0ny7dBz_2aWi6fTxnJ3XxHt3F71yx1_vNy_qRb58fntZ3W14KNAN3FRSCKqeUy_OdLrJMVkKbCnWdkzKldKZ0AOQyhN18EO4MqtqQkCZzuVixqyW3D_5jdHGwBz-GbnppSaEWKLNcTSpaVGXwMQZX2z40bRG-LIKdadiFhp1o2B8adjaJxRT7uZILf9H_uL4Bx3Bf8Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cheng, Qi</creator><creator>Zhang, Jun</creator><creator>Zhuang, Jincheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1159-7597</orcidid></search><sort><creationdate>2022</creationdate><title>LWE from non-commutative group rings</title><author>Cheng, Qi ; Zhang, Jun ; Zhuang, Jincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ed0a32de66e88b7a445d379d17f8269c5e9ce002e410b5e9c21b916f923594e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Group theory</topic><topic>Representations</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhuang, Jincheng</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Qi</au><au>Zhang, Jun</au><au>Zhuang, Jincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LWE from non-commutative group rings</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2022</date><risdate>2022</risdate><volume>90</volume><issue>1</issue><spage>239</spage><epage>263</epage><pages>239-263</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>The Learning-With-Errors (LWE) problem (and its variants including Ring-LWE and Module-LWE), whose security are based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. For the sake of expanding sources for constructing LWE, we study the LWE problem on group rings in this work. One can regard the Ring-LWE on cyclotomic integers as a special case when the underlying group is cyclic, while our proposal utilizes non-commutative groups. In particular, we show how to build public key encryption schemes from dihedral group rings, while maintaining the efficiency of the Ring-LWE. We prove that the PKC system is semantically secure, by providing a reduction from the SIVP problem of group ring ideal lattice to the decisional group ring LWE problem. It turns out that irreducible representations of groups play important roles here. We believe that the introduction of the representation view point enriches the tool set for studying the Ring-LWE problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-021-00973-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1159-7597</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2022, Vol.90 (1), p.239-263
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2617315486
source SpringerLink Journals - AutoHoldings
subjects Coding and Information Theory
Computer Science
Cryptography
Cryptology
Discrete Mathematics in Computer Science
Group theory
Representations
Rings (mathematics)
title LWE from non-commutative group rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LWE%20from%20non-commutative%20group%20rings&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Cheng,%20Qi&rft.date=2022&rft.volume=90&rft.issue=1&rft.spage=239&rft.epage=263&rft.pages=239-263&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-021-00973-6&rft_dat=%3Cproquest_cross%3E2617315486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617315486&rft_id=info:pmid/&rfr_iscdi=true