Recent Advances in the Development of Materials for Terahertz Metamaterial Sensing
Terahertz metamaterial sensing (TMS) is a new interdisciplinary technology. A TMS system employs terahertz waves as the pumping source, these then interact with the sample and carry the substance information, e.g., refractive index, absorption spectra. These properties are relevant to the molecular...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2022-01, Vol.10 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 10 |
creator | Shen, Suling Liu, Xudong Shen, Yaochun Qu, Junle Pickwell‐MacPherson, Emma Wei, Xunbin Sun, Yiwen |
description | Terahertz metamaterial sensing (TMS) is a new interdisciplinary technology. A TMS system employs terahertz waves as the pumping source, these then interact with the sample and carry the substance information, e.g., refractive index, absorption spectra. These properties are relevant to the molecular rotation and vibration states produced by a surface‐plasmon‐polariton‐like effect. TMS technology is usually characterized by large penetration depth and high sensitivity. Owing to these advantages, TMS may be used for ultratrace detection and consequently has a wide range of practical applications in biomedicine, food safety, environmental monitoring, industry and agriculture, material characterization, and safety inspection. Furthermore, TMS performance is determined not only by the structural topology of metamaterials, but also by their compositions and substrates. This paper reviews the essential fundamentals, relevant applications, and recent advances in TMS technology with a focus on the influence of material selection on TMS performance. This review is envisaged to be used as a key reference for developing TMS‐based functional devices with enhanced characteristics.
Terahertz metamaterial sensing (TMS) may be used for ultratrace detection, implying a wide range of applications. This paper reviews essential fundamentals, relevant applications, and recent advances in TMS technology with a focus on the influence of material selection on TMS performance. This review is envisaged to be used as a key reference for developing TMS‐based functional devices with enhanced characteristics. |
doi_str_mv | 10.1002/adom.202101008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617231153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617231153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-c8143ac3b00749a8ee3e377fb4614e1aef9982d908a815778b76f98e5ef25e833</originalsourceid><addsrcrecordid>eNqFkM1rAjEQxUNpoWK99hzoeW0m2TXJUbRfoAjWnkNcJ3XF3dhktdi_vrsobW89zQzv9-bBI-QWWB8Y4_d25cs-ZxxYc6oL0uGgswSYhMs_-zXpxbhhrIGk0KnskPkcc6xqOlwdbJVjpEVF6zXSMR5w63dlq3lHp7bGUNhtpM4HusBg1xjqLzrF2pZnjb5iFYvq_YZcuYbE3nl2ydvjw2L0nExmTy-j4STJRSZVkitIhc3FkjGZaqsQBQop3TIdQIpg0Wmt-EozZRVkUqqlHDitMEPHM1RCdMnd6e8u-I89xtps_D5UTaThA5BcAGQt1T9RefAxBnRmF4rShqMBZtrqTFud-amuMeiT4bPY4vEf2gzHs-mv9xvnWHGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617231153</pqid></control><display><type>article</type><title>Recent Advances in the Development of Materials for Terahertz Metamaterial Sensing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shen, Suling ; Liu, Xudong ; Shen, Yaochun ; Qu, Junle ; Pickwell‐MacPherson, Emma ; Wei, Xunbin ; Sun, Yiwen</creator><creatorcontrib>Shen, Suling ; Liu, Xudong ; Shen, Yaochun ; Qu, Junle ; Pickwell‐MacPherson, Emma ; Wei, Xunbin ; Sun, Yiwen</creatorcontrib><description>Terahertz metamaterial sensing (TMS) is a new interdisciplinary technology. A TMS system employs terahertz waves as the pumping source, these then interact with the sample and carry the substance information, e.g., refractive index, absorption spectra. These properties are relevant to the molecular rotation and vibration states produced by a surface‐plasmon‐polariton‐like effect. TMS technology is usually characterized by large penetration depth and high sensitivity. Owing to these advantages, TMS may be used for ultratrace detection and consequently has a wide range of practical applications in biomedicine, food safety, environmental monitoring, industry and agriculture, material characterization, and safety inspection. Furthermore, TMS performance is determined not only by the structural topology of metamaterials, but also by their compositions and substrates. This paper reviews the essential fundamentals, relevant applications, and recent advances in TMS technology with a focus on the influence of material selection on TMS performance. This review is envisaged to be used as a key reference for developing TMS‐based functional devices with enhanced characteristics.
Terahertz metamaterial sensing (TMS) may be used for ultratrace detection, implying a wide range of applications. This paper reviews essential fundamentals, relevant applications, and recent advances in TMS technology with a focus on the influence of material selection on TMS performance. This review is envisaged to be used as a key reference for developing TMS‐based functional devices with enhanced characteristics.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202101008</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Environmental monitoring ; Inspection ; material selection ; Materials science ; Materials selection ; Metamaterials ; Molecular rotation ; Optics ; Penetration depth ; Polaritons ; Refractivity ; Substrates ; surface plasmon polariton ; Terahertz frequencies ; terahertz metamaterial sensing ; terahertz spectroscopy | ultratrace detection ; Topology</subject><ispartof>Advanced optical materials, 2022-01, Vol.10 (1), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-c8143ac3b00749a8ee3e377fb4614e1aef9982d908a815778b76f98e5ef25e833</citedby><cites>FETCH-LOGICAL-c3578-c8143ac3b00749a8ee3e377fb4614e1aef9982d908a815778b76f98e5ef25e833</cites><orcidid>0000-0003-4465-3559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202101008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202101008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shen, Suling</creatorcontrib><creatorcontrib>Liu, Xudong</creatorcontrib><creatorcontrib>Shen, Yaochun</creatorcontrib><creatorcontrib>Qu, Junle</creatorcontrib><creatorcontrib>Pickwell‐MacPherson, Emma</creatorcontrib><creatorcontrib>Wei, Xunbin</creatorcontrib><creatorcontrib>Sun, Yiwen</creatorcontrib><title>Recent Advances in the Development of Materials for Terahertz Metamaterial Sensing</title><title>Advanced optical materials</title><description>Terahertz metamaterial sensing (TMS) is a new interdisciplinary technology. A TMS system employs terahertz waves as the pumping source, these then interact with the sample and carry the substance information, e.g., refractive index, absorption spectra. These properties are relevant to the molecular rotation and vibration states produced by a surface‐plasmon‐polariton‐like effect. TMS technology is usually characterized by large penetration depth and high sensitivity. Owing to these advantages, TMS may be used for ultratrace detection and consequently has a wide range of practical applications in biomedicine, food safety, environmental monitoring, industry and agriculture, material characterization, and safety inspection. Furthermore, TMS performance is determined not only by the structural topology of metamaterials, but also by their compositions and substrates. This paper reviews the essential fundamentals, relevant applications, and recent advances in TMS technology with a focus on the influence of material selection on TMS performance. This review is envisaged to be used as a key reference for developing TMS‐based functional devices with enhanced characteristics.
Terahertz metamaterial sensing (TMS) may be used for ultratrace detection, implying a wide range of applications. This paper reviews essential fundamentals, relevant applications, and recent advances in TMS technology with a focus on the influence of material selection on TMS performance. This review is envisaged to be used as a key reference for developing TMS‐based functional devices with enhanced characteristics.</description><subject>Absorption spectra</subject><subject>Environmental monitoring</subject><subject>Inspection</subject><subject>material selection</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>Metamaterials</subject><subject>Molecular rotation</subject><subject>Optics</subject><subject>Penetration depth</subject><subject>Polaritons</subject><subject>Refractivity</subject><subject>Substrates</subject><subject>surface plasmon polariton</subject><subject>Terahertz frequencies</subject><subject>terahertz metamaterial sensing</subject><subject>terahertz spectroscopy | ultratrace detection</subject><subject>Topology</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1rAjEQxUNpoWK99hzoeW0m2TXJUbRfoAjWnkNcJ3XF3dhktdi_vrsobW89zQzv9-bBI-QWWB8Y4_d25cs-ZxxYc6oL0uGgswSYhMs_-zXpxbhhrIGk0KnskPkcc6xqOlwdbJVjpEVF6zXSMR5w63dlq3lHp7bGUNhtpM4HusBg1xjqLzrF2pZnjb5iFYvq_YZcuYbE3nl2ydvjw2L0nExmTy-j4STJRSZVkitIhc3FkjGZaqsQBQop3TIdQIpg0Wmt-EozZRVkUqqlHDitMEPHM1RCdMnd6e8u-I89xtps_D5UTaThA5BcAGQt1T9RefAxBnRmF4rShqMBZtrqTFud-amuMeiT4bPY4vEf2gzHs-mv9xvnWHGY</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Shen, Suling</creator><creator>Liu, Xudong</creator><creator>Shen, Yaochun</creator><creator>Qu, Junle</creator><creator>Pickwell‐MacPherson, Emma</creator><creator>Wei, Xunbin</creator><creator>Sun, Yiwen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4465-3559</orcidid></search><sort><creationdate>20220101</creationdate><title>Recent Advances in the Development of Materials for Terahertz Metamaterial Sensing</title><author>Shen, Suling ; Liu, Xudong ; Shen, Yaochun ; Qu, Junle ; Pickwell‐MacPherson, Emma ; Wei, Xunbin ; Sun, Yiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-c8143ac3b00749a8ee3e377fb4614e1aef9982d908a815778b76f98e5ef25e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectra</topic><topic>Environmental monitoring</topic><topic>Inspection</topic><topic>material selection</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>Metamaterials</topic><topic>Molecular rotation</topic><topic>Optics</topic><topic>Penetration depth</topic><topic>Polaritons</topic><topic>Refractivity</topic><topic>Substrates</topic><topic>surface plasmon polariton</topic><topic>Terahertz frequencies</topic><topic>terahertz metamaterial sensing</topic><topic>terahertz spectroscopy | ultratrace detection</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Shen, Suling</creatorcontrib><creatorcontrib>Liu, Xudong</creatorcontrib><creatorcontrib>Shen, Yaochun</creatorcontrib><creatorcontrib>Qu, Junle</creatorcontrib><creatorcontrib>Pickwell‐MacPherson, Emma</creatorcontrib><creatorcontrib>Wei, Xunbin</creatorcontrib><creatorcontrib>Sun, Yiwen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Suling</au><au>Liu, Xudong</au><au>Shen, Yaochun</au><au>Qu, Junle</au><au>Pickwell‐MacPherson, Emma</au><au>Wei, Xunbin</au><au>Sun, Yiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in the Development of Materials for Terahertz Metamaterial Sensing</atitle><jtitle>Advanced optical materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Terahertz metamaterial sensing (TMS) is a new interdisciplinary technology. A TMS system employs terahertz waves as the pumping source, these then interact with the sample and carry the substance information, e.g., refractive index, absorption spectra. These properties are relevant to the molecular rotation and vibration states produced by a surface‐plasmon‐polariton‐like effect. TMS technology is usually characterized by large penetration depth and high sensitivity. Owing to these advantages, TMS may be used for ultratrace detection and consequently has a wide range of practical applications in biomedicine, food safety, environmental monitoring, industry and agriculture, material characterization, and safety inspection. Furthermore, TMS performance is determined not only by the structural topology of metamaterials, but also by their compositions and substrates. This paper reviews the essential fundamentals, relevant applications, and recent advances in TMS technology with a focus on the influence of material selection on TMS performance. This review is envisaged to be used as a key reference for developing TMS‐based functional devices with enhanced characteristics.
Terahertz metamaterial sensing (TMS) may be used for ultratrace detection, implying a wide range of applications. This paper reviews essential fundamentals, relevant applications, and recent advances in TMS technology with a focus on the influence of material selection on TMS performance. This review is envisaged to be used as a key reference for developing TMS‐based functional devices with enhanced characteristics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202101008</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4465-3559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2022-01, Vol.10 (1), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2617231153 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption spectra Environmental monitoring Inspection material selection Materials science Materials selection Metamaterials Molecular rotation Optics Penetration depth Polaritons Refractivity Substrates surface plasmon polariton Terahertz frequencies terahertz metamaterial sensing terahertz spectroscopy | ultratrace detection Topology |
title | Recent Advances in the Development of Materials for Terahertz Metamaterial Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20the%20Development%20of%20Materials%20for%20Terahertz%20Metamaterial%20Sensing&rft.jtitle=Advanced%20optical%20materials&rft.au=Shen,%20Suling&rft.date=2022-01-01&rft.volume=10&rft.issue=1&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202101008&rft_dat=%3Cproquest_cross%3E2617231153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617231153&rft_id=info:pmid/&rfr_iscdi=true |