Improved SinGAN's Performance by Changing the Activation Function

Generative adversarial nets (GANs) perform well on a variety of tasks, but rely on large datasets and expensive computer‐based learning. SinGAN was proposed as a GANs that overcomes this problem, but its super‐resolution performance for large‐scale natural images was not very good. In this study, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEJ transactions on electrical and electronic engineering 2022-02, Vol.17 (2), p.308-310
Hauptverfasser: Segawa, Ryo, Hayashi, Hitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 2
container_start_page 308
container_title IEEJ transactions on electrical and electronic engineering
container_volume 17
creator Segawa, Ryo
Hayashi, Hitoshi
description Generative adversarial nets (GANs) perform well on a variety of tasks, but rely on large datasets and expensive computer‐based learning. SinGAN was proposed as a GANs that overcomes this problem, but its super‐resolution performance for large‐scale natural images was not very good. In this study, we aimed to improve the performance of SinGAN by changing the activation function. As a result of the verification, it was found that applying RSwish to the generator and Swish to the discriminator can generate an image with less deterioration as a whole than the default. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
doi_str_mv 10.1002/tee.23514
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617200663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617200663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-705fe6d97ce644280f61b5a5b86c9f94badcb153c6f8790c9912c0ac8e986ad33</originalsourceid><addsrcrecordid>eNp1kE9PwjAYhxujiYge_AZNPBgPg_5b1x4XAkhC1EQ8N13Xwgh02A7Mvr3DGW-e3t_h-b3vmweAe4xGGCEybqwdEZpidgEGWFKcMCnw5V_O6DW4iXGLEONUiAHIF_tDqE-2hO-Vn-cvjxG-2eDqsNfeWFi0cLLRfl35NWw2FuamqU66qWoPZ0dvzuEWXDm9i_budw7Bx2y6mjwny9f5YpIvE0NkxpIMpc7yUmbGcsaIQI7jItVpIbiRTrJCl6bAKTXciUwiIyUmBmkjrBRcl5QOwUO_t_v382hjo7b1MfjupCIcZwQhzs_UU0-ZUMcYrFOHUO11aBVG6mxIdYbUj6GOHffsV7Wz7f-gWk2nfeMbVfVmUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617200663</pqid></control><display><type>article</type><title>Improved SinGAN's Performance by Changing the Activation Function</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Segawa, Ryo ; Hayashi, Hitoshi</creator><creatorcontrib>Segawa, Ryo ; Hayashi, Hitoshi</creatorcontrib><description>Generative adversarial nets (GANs) perform well on a variety of tasks, but rely on large datasets and expensive computer‐based learning. SinGAN was proposed as a GANs that overcomes this problem, but its super‐resolution performance for large‐scale natural images was not very good. In this study, we aimed to improve the performance of SinGAN by changing the activation function. As a result of the verification, it was found that applying RSwish to the generator and Swish to the discriminator can generate an image with less deterioration as a whole than the default. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.23514</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>activation function ; deep learning ; GANs ; Performance enhancement ; super‐resolution ; unsupervised learning</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2022-02, Vol.17 (2), p.308-310</ispartof><rights>2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><rights>2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-705fe6d97ce644280f61b5a5b86c9f94badcb153c6f8790c9912c0ac8e986ad33</citedby><cites>FETCH-LOGICAL-c2974-705fe6d97ce644280f61b5a5b86c9f94badcb153c6f8790c9912c0ac8e986ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.23514$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.23514$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Segawa, Ryo</creatorcontrib><creatorcontrib>Hayashi, Hitoshi</creatorcontrib><title>Improved SinGAN's Performance by Changing the Activation Function</title><title>IEEJ transactions on electrical and electronic engineering</title><description>Generative adversarial nets (GANs) perform well on a variety of tasks, but rely on large datasets and expensive computer‐based learning. SinGAN was proposed as a GANs that overcomes this problem, but its super‐resolution performance for large‐scale natural images was not very good. In this study, we aimed to improve the performance of SinGAN by changing the activation function. As a result of the verification, it was found that applying RSwish to the generator and Swish to the discriminator can generate an image with less deterioration as a whole than the default. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</description><subject>activation function</subject><subject>deep learning</subject><subject>GANs</subject><subject>Performance enhancement</subject><subject>super‐resolution</subject><subject>unsupervised learning</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwjAYhxujiYge_AZNPBgPg_5b1x4XAkhC1EQ8N13Xwgh02A7Mvr3DGW-e3t_h-b3vmweAe4xGGCEybqwdEZpidgEGWFKcMCnw5V_O6DW4iXGLEONUiAHIF_tDqE-2hO-Vn-cvjxG-2eDqsNfeWFi0cLLRfl35NWw2FuamqU66qWoPZ0dvzuEWXDm9i_budw7Bx2y6mjwny9f5YpIvE0NkxpIMpc7yUmbGcsaIQI7jItVpIbiRTrJCl6bAKTXciUwiIyUmBmkjrBRcl5QOwUO_t_v382hjo7b1MfjupCIcZwQhzs_UU0-ZUMcYrFOHUO11aBVG6mxIdYbUj6GOHffsV7Wz7f-gWk2nfeMbVfVmUA</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Segawa, Ryo</creator><creator>Hayashi, Hitoshi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202202</creationdate><title>Improved SinGAN's Performance by Changing the Activation Function</title><author>Segawa, Ryo ; Hayashi, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-705fe6d97ce644280f61b5a5b86c9f94badcb153c6f8790c9912c0ac8e986ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>activation function</topic><topic>deep learning</topic><topic>GANs</topic><topic>Performance enhancement</topic><topic>super‐resolution</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segawa, Ryo</creatorcontrib><creatorcontrib>Hayashi, Hitoshi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segawa, Ryo</au><au>Hayashi, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved SinGAN's Performance by Changing the Activation Function</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2022-02</date><risdate>2022</risdate><volume>17</volume><issue>2</issue><spage>308</spage><epage>310</epage><pages>308-310</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>Generative adversarial nets (GANs) perform well on a variety of tasks, but rely on large datasets and expensive computer‐based learning. SinGAN was proposed as a GANs that overcomes this problem, but its super‐resolution performance for large‐scale natural images was not very good. In this study, we aimed to improve the performance of SinGAN by changing the activation function. As a result of the verification, it was found that applying RSwish to the generator and Swish to the discriminator can generate an image with less deterioration as a whole than the default. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/tee.23514</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1931-4973
ispartof IEEJ transactions on electrical and electronic engineering, 2022-02, Vol.17 (2), p.308-310
issn 1931-4973
1931-4981
language eng
recordid cdi_proquest_journals_2617200663
source Wiley Online Library Journals Frontfile Complete
subjects activation function
deep learning
GANs
Performance enhancement
super‐resolution
unsupervised learning
title Improved SinGAN's Performance by Changing the Activation Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20SinGAN's%20Performance%20by%20Changing%20the%20Activation%20Function&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Segawa,%20Ryo&rft.date=2022-02&rft.volume=17&rft.issue=2&rft.spage=308&rft.epage=310&rft.pages=308-310&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.23514&rft_dat=%3Cproquest_cross%3E2617200663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617200663&rft_id=info:pmid/&rfr_iscdi=true