Using Deep Learning with Large Aggregated Datasets for COVID-19 Classification from Cough
The Covid-19 pandemic has been one of the most devastating events in recent history, claiming the lives of more than 5 million people worldwide. Even with the worldwide distribution of vaccines, there is an apparent need for affordable, reliable, and accessible screening techniques to serve parts of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Esin Darici Haritaoglu Rasmussen, Nicholas Tan, Daniel C H Jennifer, Ranjani J Xiao, Jaclyn Chaudhari, Gunvant Rajput, Akanksha Govindan, Praveen Canham, Christian Chen, Wei Yamaura, Minami Gomezjurado, Laura Broukhim, Aaron Khanzada, Amil Pilanci, Mert |
description | The Covid-19 pandemic has been one of the most devastating events in recent history, claiming the lives of more than 5 million people worldwide. Even with the worldwide distribution of vaccines, there is an apparent need for affordable, reliable, and accessible screening techniques to serve parts of the World that do not have access to Western medicine. Artificial Intelligence can provide a solution utilizing cough sounds as a primary screening mode for COVID-19 diagnosis. This paper presents multiple models that have achieved relatively respectable performance on the largest evaluation dataset currently presented in academic literature. Through investigation of a self-supervised learning model (Area under the ROC curve, AUC = 0.807) and a convolutional nerual network (CNN) model (AUC = 0.802), we observe the possibility of model bias with limited datasets. Moreover, we observe that performance increases with training data size, showing the need for the worldwide collection of data to help combat the Covid-19 pandemic with non-traditional means. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2617117700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617117700</sourcerecordid><originalsourceid>FETCH-proquest_journals_26171177003</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_XOhZ2GZqPYYWBUEvFfQko65zYs52J_1-BX1AT4fDOSMWyDgW0XIh5YSFRA3nXKaZTJI4YNczmU5DgdjDAZXrvvYyvoaDchphrbVDrTzeoVBeEXqCyjrIj5d9EYkV5K0iMpW5KW9sB5WzD8jtoOsZG1eqJQx_nLL5dnPKd1Hv7HNA8mVjB9d9UilTkQmRZZzH_11vDHJApg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617117700</pqid></control><display><type>article</type><title>Using Deep Learning with Large Aggregated Datasets for COVID-19 Classification from Cough</title><source>Free E- Journals</source><creator>Esin Darici Haritaoglu ; Rasmussen, Nicholas ; Tan, Daniel C H ; Jennifer, Ranjani J ; Xiao, Jaclyn ; Chaudhari, Gunvant ; Rajput, Akanksha ; Govindan, Praveen ; Canham, Christian ; Chen, Wei ; Yamaura, Minami ; Gomezjurado, Laura ; Broukhim, Aaron ; Khanzada, Amil ; Pilanci, Mert</creator><creatorcontrib>Esin Darici Haritaoglu ; Rasmussen, Nicholas ; Tan, Daniel C H ; Jennifer, Ranjani J ; Xiao, Jaclyn ; Chaudhari, Gunvant ; Rajput, Akanksha ; Govindan, Praveen ; Canham, Christian ; Chen, Wei ; Yamaura, Minami ; Gomezjurado, Laura ; Broukhim, Aaron ; Khanzada, Amil ; Pilanci, Mert</creatorcontrib><description>The Covid-19 pandemic has been one of the most devastating events in recent history, claiming the lives of more than 5 million people worldwide. Even with the worldwide distribution of vaccines, there is an apparent need for affordable, reliable, and accessible screening techniques to serve parts of the World that do not have access to Western medicine. Artificial Intelligence can provide a solution utilizing cough sounds as a primary screening mode for COVID-19 diagnosis. This paper presents multiple models that have achieved relatively respectable performance on the largest evaluation dataset currently presented in academic literature. Through investigation of a self-supervised learning model (Area under the ROC curve, AUC = 0.807) and a convolutional nerual network (CNN) model (AUC = 0.802), we observe the possibility of model bias with limited datasets. Moreover, we observe that performance increases with training data size, showing the need for the worldwide collection of data to help combat the Covid-19 pandemic with non-traditional means.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acoustics ; Artificial intelligence ; Coronaviruses ; Cough ; COVID-19 ; Datasets ; Machine learning ; Pandemics ; Screening</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Esin Darici Haritaoglu</creatorcontrib><creatorcontrib>Rasmussen, Nicholas</creatorcontrib><creatorcontrib>Tan, Daniel C H</creatorcontrib><creatorcontrib>Jennifer, Ranjani J</creatorcontrib><creatorcontrib>Xiao, Jaclyn</creatorcontrib><creatorcontrib>Chaudhari, Gunvant</creatorcontrib><creatorcontrib>Rajput, Akanksha</creatorcontrib><creatorcontrib>Govindan, Praveen</creatorcontrib><creatorcontrib>Canham, Christian</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yamaura, Minami</creatorcontrib><creatorcontrib>Gomezjurado, Laura</creatorcontrib><creatorcontrib>Broukhim, Aaron</creatorcontrib><creatorcontrib>Khanzada, Amil</creatorcontrib><creatorcontrib>Pilanci, Mert</creatorcontrib><title>Using Deep Learning with Large Aggregated Datasets for COVID-19 Classification from Cough</title><title>arXiv.org</title><description>The Covid-19 pandemic has been one of the most devastating events in recent history, claiming the lives of more than 5 million people worldwide. Even with the worldwide distribution of vaccines, there is an apparent need for affordable, reliable, and accessible screening techniques to serve parts of the World that do not have access to Western medicine. Artificial Intelligence can provide a solution utilizing cough sounds as a primary screening mode for COVID-19 diagnosis. This paper presents multiple models that have achieved relatively respectable performance on the largest evaluation dataset currently presented in academic literature. Through investigation of a self-supervised learning model (Area under the ROC curve, AUC = 0.807) and a convolutional nerual network (CNN) model (AUC = 0.802), we observe the possibility of model bias with limited datasets. Moreover, we observe that performance increases with training data size, showing the need for the worldwide collection of data to help combat the Covid-19 pandemic with non-traditional means.</description><subject>Acoustics</subject><subject>Artificial intelligence</subject><subject>Coronaviruses</subject><subject>Cough</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Pandemics</subject><subject>Screening</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_XOhZ2GZqPYYWBUEvFfQko65zYs52J_1-BX1AT4fDOSMWyDgW0XIh5YSFRA3nXKaZTJI4YNczmU5DgdjDAZXrvvYyvoaDchphrbVDrTzeoVBeEXqCyjrIj5d9EYkV5K0iMpW5KW9sB5WzD8jtoOsZG1eqJQx_nLL5dnPKd1Hv7HNA8mVjB9d9UilTkQmRZZzH_11vDHJApg</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Esin Darici Haritaoglu</creator><creator>Rasmussen, Nicholas</creator><creator>Tan, Daniel C H</creator><creator>Jennifer, Ranjani J</creator><creator>Xiao, Jaclyn</creator><creator>Chaudhari, Gunvant</creator><creator>Rajput, Akanksha</creator><creator>Govindan, Praveen</creator><creator>Canham, Christian</creator><creator>Chen, Wei</creator><creator>Yamaura, Minami</creator><creator>Gomezjurado, Laura</creator><creator>Broukhim, Aaron</creator><creator>Khanzada, Amil</creator><creator>Pilanci, Mert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220330</creationdate><title>Using Deep Learning with Large Aggregated Datasets for COVID-19 Classification from Cough</title><author>Esin Darici Haritaoglu ; Rasmussen, Nicholas ; Tan, Daniel C H ; Jennifer, Ranjani J ; Xiao, Jaclyn ; Chaudhari, Gunvant ; Rajput, Akanksha ; Govindan, Praveen ; Canham, Christian ; Chen, Wei ; Yamaura, Minami ; Gomezjurado, Laura ; Broukhim, Aaron ; Khanzada, Amil ; Pilanci, Mert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26171177003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Artificial intelligence</topic><topic>Coronaviruses</topic><topic>Cough</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Pandemics</topic><topic>Screening</topic><toplevel>online_resources</toplevel><creatorcontrib>Esin Darici Haritaoglu</creatorcontrib><creatorcontrib>Rasmussen, Nicholas</creatorcontrib><creatorcontrib>Tan, Daniel C H</creatorcontrib><creatorcontrib>Jennifer, Ranjani J</creatorcontrib><creatorcontrib>Xiao, Jaclyn</creatorcontrib><creatorcontrib>Chaudhari, Gunvant</creatorcontrib><creatorcontrib>Rajput, Akanksha</creatorcontrib><creatorcontrib>Govindan, Praveen</creatorcontrib><creatorcontrib>Canham, Christian</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yamaura, Minami</creatorcontrib><creatorcontrib>Gomezjurado, Laura</creatorcontrib><creatorcontrib>Broukhim, Aaron</creatorcontrib><creatorcontrib>Khanzada, Amil</creatorcontrib><creatorcontrib>Pilanci, Mert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esin Darici Haritaoglu</au><au>Rasmussen, Nicholas</au><au>Tan, Daniel C H</au><au>Jennifer, Ranjani J</au><au>Xiao, Jaclyn</au><au>Chaudhari, Gunvant</au><au>Rajput, Akanksha</au><au>Govindan, Praveen</au><au>Canham, Christian</au><au>Chen, Wei</au><au>Yamaura, Minami</au><au>Gomezjurado, Laura</au><au>Broukhim, Aaron</au><au>Khanzada, Amil</au><au>Pilanci, Mert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Using Deep Learning with Large Aggregated Datasets for COVID-19 Classification from Cough</atitle><jtitle>arXiv.org</jtitle><date>2022-03-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The Covid-19 pandemic has been one of the most devastating events in recent history, claiming the lives of more than 5 million people worldwide. Even with the worldwide distribution of vaccines, there is an apparent need for affordable, reliable, and accessible screening techniques to serve parts of the World that do not have access to Western medicine. Artificial Intelligence can provide a solution utilizing cough sounds as a primary screening mode for COVID-19 diagnosis. This paper presents multiple models that have achieved relatively respectable performance on the largest evaluation dataset currently presented in academic literature. Through investigation of a self-supervised learning model (Area under the ROC curve, AUC = 0.807) and a convolutional nerual network (CNN) model (AUC = 0.802), we observe the possibility of model bias with limited datasets. Moreover, we observe that performance increases with training data size, showing the need for the worldwide collection of data to help combat the Covid-19 pandemic with non-traditional means.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2617117700 |
source | Free E- Journals |
subjects | Acoustics Artificial intelligence Coronaviruses Cough COVID-19 Datasets Machine learning Pandemics Screening |
title | Using Deep Learning with Large Aggregated Datasets for COVID-19 Classification from Cough |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Using%20Deep%20Learning%20with%20Large%20Aggregated%20Datasets%20for%20COVID-19%20Classification%20from%20Cough&rft.jtitle=arXiv.org&rft.au=Esin%20Darici%20Haritaoglu&rft.date=2022-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2617117700%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617117700&rft_id=info:pmid/&rfr_iscdi=true |