The average tree value for hypergraph games
We consider transferable utility cooperative games (TU games) with limited cooperation introduced by a hypergraph communication structure, the so-called hypergraph games. A hypergraph communication structure is given by a collection of coalitions, the hyperlinks of the hypergraph, for which it is as...
Gespeichert in:
Veröffentlicht in: | Mathematical methods of operations research (Heidelberg, Germany) Germany), 2021-12, Vol.94 (3), p.437-460 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | 3 |
container_start_page | 437 |
container_title | Mathematical methods of operations research (Heidelberg, Germany) |
container_volume | 94 |
creator | Kang, Liying Khmelnitskaya, Anna Shan, Erfang Talman, Dolf Zhang, Guang |
description | We consider transferable utility cooperative games (TU games) with limited cooperation introduced by a hypergraph communication structure, the so-called hypergraph games. A hypergraph communication structure is given by a collection of coalitions, the hyperlinks of the hypergraph, for which it is assumed that only coalitions that are hyperlinks or connected unions of hyperlinks are able to cooperate and realize their worth. We introduce the average tree value for hypergraph games, which assigns to each player the average of the player’s marginal contributions with respect to a particular collection of rooted spanning trees of the hypergraph, and study its properties. We show that the average tree value is stable on the subclass of superadditive cycle-free hypergraph games. We also provide axiomatizations of the average tree value on the subclasses of cycle-free hypergraph games, hypertree games, and cycle hypergraph games. |
doi_str_mv | 10.1007/s00186-021-00762-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617109937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617109937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-469ff71c91ddc3f443ddd719d99ecb8d025e2eb9368c080c98ee5764565bb4273</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXApUTzzmQpRatQcFPBXcgkd6YtbWdM-qD_3qlT6M7VvZf7nXPgIHTP6BOj1DxnSlmhCeWMdKfmZH-BBkwKThRn5vK0c2vlNbrJeUE7Xko-QI_TGWC_g-RrwJsEgHd-uQVcNQnPDi2kOvl2hmu_gnyLriq_zHB3mkP09fY6Hb2Tyef4Y_QyIUEqsSFS26oyLFgWYxCVlCLGaJiN1kIoi0i5Ag6lFboItKDBFgDKaKm0KkvJjRiih963Tc3PFvLGLZptWneRjmtmGLVWHCneUyE1OSeoXJvmK58OjlF3LMX1pbiuFPdXitt3ItyLIDTreT5LTKE4V4x_d4jokdw91zWkc_o_xr8HP24P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617109937</pqid></control><display><type>article</type><title>The average tree value for hypergraph games</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Kang, Liying ; Khmelnitskaya, Anna ; Shan, Erfang ; Talman, Dolf ; Zhang, Guang</creator><creatorcontrib>Kang, Liying ; Khmelnitskaya, Anna ; Shan, Erfang ; Talman, Dolf ; Zhang, Guang</creatorcontrib><description>We consider transferable utility cooperative games (TU games) with limited cooperation introduced by a hypergraph communication structure, the so-called hypergraph games. A hypergraph communication structure is given by a collection of coalitions, the hyperlinks of the hypergraph, for which it is assumed that only coalitions that are hyperlinks or connected unions of hyperlinks are able to cooperate and realize their worth. We introduce the average tree value for hypergraph games, which assigns to each player the average of the player’s marginal contributions with respect to a particular collection of rooted spanning trees of the hypergraph, and study its properties. We show that the average tree value is stable on the subclass of superadditive cycle-free hypergraph games. We also provide axiomatizations of the average tree value on the subclasses of cycle-free hypergraph games, hypertree games, and cycle hypergraph games.</description><identifier>ISSN: 1432-2994</identifier><identifier>EISSN: 1432-5217</identifier><identifier>DOI: 10.1007/s00186-021-00762-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autumn ; Business and Management ; Calculus of Variations and Optimal Control; Optimization ; Cooperation ; Game theory ; Games ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Operations research ; Operations Research/Decision Theory ; Original Article</subject><ispartof>Mathematical methods of operations research (Heidelberg, Germany), 2021-12, Vol.94 (3), p.437-460</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-469ff71c91ddc3f443ddd719d99ecb8d025e2eb9368c080c98ee5764565bb4273</citedby><cites>FETCH-LOGICAL-c453t-469ff71c91ddc3f443ddd719d99ecb8d025e2eb9368c080c98ee5764565bb4273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00186-021-00762-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00186-021-00762-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kang, Liying</creatorcontrib><creatorcontrib>Khmelnitskaya, Anna</creatorcontrib><creatorcontrib>Shan, Erfang</creatorcontrib><creatorcontrib>Talman, Dolf</creatorcontrib><creatorcontrib>Zhang, Guang</creatorcontrib><title>The average tree value for hypergraph games</title><title>Mathematical methods of operations research (Heidelberg, Germany)</title><addtitle>Math Meth Oper Res</addtitle><description>We consider transferable utility cooperative games (TU games) with limited cooperation introduced by a hypergraph communication structure, the so-called hypergraph games. A hypergraph communication structure is given by a collection of coalitions, the hyperlinks of the hypergraph, for which it is assumed that only coalitions that are hyperlinks or connected unions of hyperlinks are able to cooperate and realize their worth. We introduce the average tree value for hypergraph games, which assigns to each player the average of the player’s marginal contributions with respect to a particular collection of rooted spanning trees of the hypergraph, and study its properties. We show that the average tree value is stable on the subclass of superadditive cycle-free hypergraph games. We also provide axiomatizations of the average tree value on the subclasses of cycle-free hypergraph games, hypertree games, and cycle hypergraph games.</description><subject>Autumn</subject><subject>Business and Management</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Cooperation</subject><subject>Game theory</subject><subject>Games</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Original Article</subject><issn>1432-2994</issn><issn>1432-5217</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXApUTzzmQpRatQcFPBXcgkd6YtbWdM-qD_3qlT6M7VvZf7nXPgIHTP6BOj1DxnSlmhCeWMdKfmZH-BBkwKThRn5vK0c2vlNbrJeUE7Xko-QI_TGWC_g-RrwJsEgHd-uQVcNQnPDi2kOvl2hmu_gnyLriq_zHB3mkP09fY6Hb2Tyef4Y_QyIUEqsSFS26oyLFgWYxCVlCLGaJiN1kIoi0i5Ag6lFboItKDBFgDKaKm0KkvJjRiih963Tc3PFvLGLZptWneRjmtmGLVWHCneUyE1OSeoXJvmK58OjlF3LMX1pbiuFPdXitt3ItyLIDTreT5LTKE4V4x_d4jokdw91zWkc_o_xr8HP24P</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kang, Liying</creator><creator>Khmelnitskaya, Anna</creator><creator>Shan, Erfang</creator><creator>Talman, Dolf</creator><creator>Zhang, Guang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211201</creationdate><title>The average tree value for hypergraph games</title><author>Kang, Liying ; Khmelnitskaya, Anna ; Shan, Erfang ; Talman, Dolf ; Zhang, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-469ff71c91ddc3f443ddd719d99ecb8d025e2eb9368c080c98ee5764565bb4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autumn</topic><topic>Business and Management</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Cooperation</topic><topic>Game theory</topic><topic>Games</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Liying</creatorcontrib><creatorcontrib>Khmelnitskaya, Anna</creatorcontrib><creatorcontrib>Shan, Erfang</creatorcontrib><creatorcontrib>Talman, Dolf</creatorcontrib><creatorcontrib>Zhang, Guang</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical methods of operations research (Heidelberg, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Liying</au><au>Khmelnitskaya, Anna</au><au>Shan, Erfang</au><au>Talman, Dolf</au><au>Zhang, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The average tree value for hypergraph games</atitle><jtitle>Mathematical methods of operations research (Heidelberg, Germany)</jtitle><stitle>Math Meth Oper Res</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>94</volume><issue>3</issue><spage>437</spage><epage>460</epage><pages>437-460</pages><issn>1432-2994</issn><eissn>1432-5217</eissn><abstract>We consider transferable utility cooperative games (TU games) with limited cooperation introduced by a hypergraph communication structure, the so-called hypergraph games. A hypergraph communication structure is given by a collection of coalitions, the hyperlinks of the hypergraph, for which it is assumed that only coalitions that are hyperlinks or connected unions of hyperlinks are able to cooperate and realize their worth. We introduce the average tree value for hypergraph games, which assigns to each player the average of the player’s marginal contributions with respect to a particular collection of rooted spanning trees of the hypergraph, and study its properties. We show that the average tree value is stable on the subclass of superadditive cycle-free hypergraph games. We also provide axiomatizations of the average tree value on the subclasses of cycle-free hypergraph games, hypertree games, and cycle hypergraph games.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00186-021-00762-w</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-2994 |
ispartof | Mathematical methods of operations research (Heidelberg, Germany), 2021-12, Vol.94 (3), p.437-460 |
issn | 1432-2994 1432-5217 |
language | eng |
recordid | cdi_proquest_journals_2617109937 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Autumn Business and Management Calculus of Variations and Optimal Control Optimization Cooperation Game theory Games Graph theory Graphs Mathematics Mathematics and Statistics Operations research Operations Research/Decision Theory Original Article |
title | The average tree value for hypergraph games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20average%20tree%20value%20for%20hypergraph%20games&rft.jtitle=Mathematical%20methods%20of%20operations%20research%20(Heidelberg,%20Germany)&rft.au=Kang,%20Liying&rft.date=2021-12-01&rft.volume=94&rft.issue=3&rft.spage=437&rft.epage=460&rft.pages=437-460&rft.issn=1432-2994&rft.eissn=1432-5217&rft_id=info:doi/10.1007/s00186-021-00762-w&rft_dat=%3Cproquest_cross%3E2617109937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617109937&rft_id=info:pmid/&rfr_iscdi=true |