What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?
The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In th...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2022, Vol.147 (1-2), p.239-250 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 1-2 |
container_start_page | 239 |
container_title | Theoretical and applied climatology |
container_volume | 147 |
creator | Paulescu, Marius Badescu, Viorel Budea, Sanda Dumitrescu, Alexandru |
description | The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In the present paper, we propose a different way of looking to the Ångström–Prescott equation, namely, to use it for the estimation of cloud and clear sky atmospheric transmittances. The key tools are the mathematical expressions which give the clear sky and cloud transmittances in terms of the Ångström–Prescott empirical coefficients. The theory is verified by comparing the mean all-sky atmospheric transmittance (innovatively inferred from the cloud and clear sky atmospheric transmittances) with the measured clearness index. Reasonably good concordance between the two quantities has been found. It was shown that the best performance is obtained with the linear Ångström–Prescott equation. Higher-order polynomial equations tend to overfit the measurements. Examples are also shown about how to use the linear Ångström–Prescott equation to obtain information about the time series stationarity and the seasonal sensitivity of the cloud and clear-sky transmittances. The present point of view gives the perspective to estimate past cloud and clear-sky climatology in places where the Ångström–Prescott equation has been fitted to the sunshine data. |
doi_str_mv | 10.1007/s00704-021-03805-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2617109878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A688928159</galeid><sourcerecordid>A688928159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-54f5fdc2e7a48b113ee62e7935e8003c059779df1b0518e636432f2d27914c713</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi1UJKYDL8AqEisWbo8viZ0VGlUtVBoJxEXAyvI4J2lKJm5tR2J2bPoGPAsvMG_Ck-ASJDSb6kjnYn2_feSfkOcMThiAOo05gaTAGQWhoaT6EVkwKSSVUosjsgCmFFW1_vKEHMd4DQC8qtSCfP18ZVOxvxu7mML-1_b3j5_vAkbnUyrwdrKp92ORcBhiMcXCbvyUinSFhRv81BR2bHKHNtD4bZe7fmuTH3zXY3z1lDxu7RDx2b-6JJ8uzj-evaHrt68vz1Zr6oQUiZayLdvGcVRW6g1jArHKQy1K1ADCQVkrVTct20DJNFaikoK3vOGqZtIpJpbkxXzvTfC3E8Zkrv0Uxvyk4RVTDGqtdKZOZqqzA5p-bH0K1uVocNs7P2Lb5_NVpXXNNSvrLHh5IMhMwu-ps1OM5vLD-0OWz6wLPsaArbkJ-SvCzjAw9_6Y2R-T_TF__TH3G4lZFDM8dhj-7_2A6g8byJOn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617109878</pqid></control><display><type>article</type><title>What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?</title><source>SpringerNature Journals</source><creator>Paulescu, Marius ; Badescu, Viorel ; Budea, Sanda ; Dumitrescu, Alexandru</creator><creatorcontrib>Paulescu, Marius ; Badescu, Viorel ; Budea, Sanda ; Dumitrescu, Alexandru</creatorcontrib><description>The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In the present paper, we propose a different way of looking to the Ångström–Prescott equation, namely, to use it for the estimation of cloud and clear sky atmospheric transmittances. The key tools are the mathematical expressions which give the clear sky and cloud transmittances in terms of the Ångström–Prescott empirical coefficients. The theory is verified by comparing the mean all-sky atmospheric transmittance (innovatively inferred from the cloud and clear sky atmospheric transmittances) with the measured clearness index. Reasonably good concordance between the two quantities has been found. It was shown that the best performance is obtained with the linear Ångström–Prescott equation. Higher-order polynomial equations tend to overfit the measurements. Examples are also shown about how to use the linear Ångström–Prescott equation to obtain information about the time series stationarity and the seasonal sensitivity of the cloud and clear-sky transmittances. The present point of view gives the perspective to estimate past cloud and clear-sky climatology in places where the Ångström–Prescott equation has been fitted to the sunshine data.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-021-03805-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Atmospheric transmittance ; Clear sky ; Clearness index ; Climate science ; Climatology ; Clouds ; Coefficients ; Converters ; Earth and Environmental Science ; Earth Sciences ; Energy ; Ground level ; Mathematical analysis ; Original Paper ; Polynomials ; Sky ; Solar energy ; Solar energy conversion ; Sunlight ; Sunshine duration ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2022, Vol.147 (1-2), p.239-250</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-54f5fdc2e7a48b113ee62e7935e8003c059779df1b0518e636432f2d27914c713</cites><orcidid>0000-0002-3232-243X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-021-03805-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-021-03805-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Paulescu, Marius</creatorcontrib><creatorcontrib>Badescu, Viorel</creatorcontrib><creatorcontrib>Budea, Sanda</creatorcontrib><creatorcontrib>Dumitrescu, Alexandru</creatorcontrib><title>What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In the present paper, we propose a different way of looking to the Ångström–Prescott equation, namely, to use it for the estimation of cloud and clear sky atmospheric transmittances. The key tools are the mathematical expressions which give the clear sky and cloud transmittances in terms of the Ångström–Prescott empirical coefficients. The theory is verified by comparing the mean all-sky atmospheric transmittance (innovatively inferred from the cloud and clear sky atmospheric transmittances) with the measured clearness index. Reasonably good concordance between the two quantities has been found. It was shown that the best performance is obtained with the linear Ångström–Prescott equation. Higher-order polynomial equations tend to overfit the measurements. Examples are also shown about how to use the linear Ångström–Prescott equation to obtain information about the time series stationarity and the seasonal sensitivity of the cloud and clear-sky transmittances. The present point of view gives the perspective to estimate past cloud and clear-sky climatology in places where the Ångström–Prescott equation has been fitted to the sunshine data.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Atmospheric transmittance</subject><subject>Clear sky</subject><subject>Clearness index</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Clouds</subject><subject>Coefficients</subject><subject>Converters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Ground level</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Sky</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Sunlight</subject><subject>Sunshine duration</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1DAUhi1UJKYDL8AqEisWbo8viZ0VGlUtVBoJxEXAyvI4J2lKJm5tR2J2bPoGPAsvMG_Ck-ASJDSb6kjnYn2_feSfkOcMThiAOo05gaTAGQWhoaT6EVkwKSSVUosjsgCmFFW1_vKEHMd4DQC8qtSCfP18ZVOxvxu7mML-1_b3j5_vAkbnUyrwdrKp92ORcBhiMcXCbvyUinSFhRv81BR2bHKHNtD4bZe7fmuTH3zXY3z1lDxu7RDx2b-6JJ8uzj-evaHrt68vz1Zr6oQUiZayLdvGcVRW6g1jArHKQy1K1ADCQVkrVTct20DJNFaikoK3vOGqZtIpJpbkxXzvTfC3E8Zkrv0Uxvyk4RVTDGqtdKZOZqqzA5p-bH0K1uVocNs7P2Lb5_NVpXXNNSvrLHh5IMhMwu-ps1OM5vLD-0OWz6wLPsaArbkJ-SvCzjAw9_6Y2R-T_TF__TH3G4lZFDM8dhj-7_2A6g8byJOn</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Paulescu, Marius</creator><creator>Badescu, Viorel</creator><creator>Budea, Sanda</creator><creator>Dumitrescu, Alexandru</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3232-243X</orcidid></search><sort><creationdate>2022</creationdate><title>What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?</title><author>Paulescu, Marius ; Badescu, Viorel ; Budea, Sanda ; Dumitrescu, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-54f5fdc2e7a48b113ee62e7935e8003c059779df1b0518e636432f2d27914c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Atmospheric transmittance</topic><topic>Clear sky</topic><topic>Clearness index</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Clouds</topic><topic>Coefficients</topic><topic>Converters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Ground level</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Sky</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Sunlight</topic><topic>Sunshine duration</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulescu, Marius</creatorcontrib><creatorcontrib>Badescu, Viorel</creatorcontrib><creatorcontrib>Budea, Sanda</creatorcontrib><creatorcontrib>Dumitrescu, Alexandru</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulescu, Marius</au><au>Badescu, Viorel</au><au>Budea, Sanda</au><au>Dumitrescu, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2022</date><risdate>2022</risdate><volume>147</volume><issue>1-2</issue><spage>239</spage><epage>250</epage><pages>239-250</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In the present paper, we propose a different way of looking to the Ångström–Prescott equation, namely, to use it for the estimation of cloud and clear sky atmospheric transmittances. The key tools are the mathematical expressions which give the clear sky and cloud transmittances in terms of the Ångström–Prescott empirical coefficients. The theory is verified by comparing the mean all-sky atmospheric transmittance (innovatively inferred from the cloud and clear sky atmospheric transmittances) with the measured clearness index. Reasonably good concordance between the two quantities has been found. It was shown that the best performance is obtained with the linear Ångström–Prescott equation. Higher-order polynomial equations tend to overfit the measurements. Examples are also shown about how to use the linear Ångström–Prescott equation to obtain information about the time series stationarity and the seasonal sensitivity of the cloud and clear-sky transmittances. The present point of view gives the perspective to estimate past cloud and clear-sky climatology in places where the Ångström–Prescott equation has been fitted to the sunshine data.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-021-03805-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3232-243X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2022, Vol.147 (1-2), p.239-250 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2617109878 |
source | SpringerNature Journals |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Atmospheric transmittance Clear sky Clearness index Climate science Climatology Clouds Coefficients Converters Earth and Environmental Science Earth Sciences Energy Ground level Mathematical analysis Original Paper Polynomials Sky Solar energy Solar energy conversion Sunlight Sunshine duration Waste Water Technology Water Management Water Pollution Control |
title | What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20%C3%85ngstr%C3%B6m%E2%80%94Prescott%20equation%20tells%20us%20about%20the%20cloud%20and%20clear-sky%20climatologies?&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Paulescu,%20Marius&rft.date=2022&rft.volume=147&rft.issue=1-2&rft.spage=239&rft.epage=250&rft.pages=239-250&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-021-03805-8&rft_dat=%3Cgale_proqu%3EA688928159%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617109878&rft_id=info:pmid/&rft_galeid=A688928159&rfr_iscdi=true |