What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?

The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2022, Vol.147 (1-2), p.239-250
Hauptverfasser: Paulescu, Marius, Badescu, Viorel, Budea, Sanda, Dumitrescu, Alexandru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 1-2
container_start_page 239
container_title Theoretical and applied climatology
container_volume 147
creator Paulescu, Marius
Badescu, Viorel
Budea, Sanda
Dumitrescu, Alexandru
description The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In the present paper, we propose a different way of looking to the Ångström–Prescott equation, namely, to use it for the estimation of cloud and clear sky atmospheric transmittances. The key tools are the mathematical expressions which give the clear sky and cloud transmittances in terms of the Ångström–Prescott empirical coefficients. The theory is verified by comparing the mean all-sky atmospheric transmittance (innovatively inferred from the cloud and clear sky atmospheric transmittances) with the measured clearness index. Reasonably good concordance between the two quantities has been found. It was shown that the best performance is obtained with the linear Ångström–Prescott equation. Higher-order polynomial equations tend to overfit the measurements. Examples are also shown about how to use the linear Ångström–Prescott equation to obtain information about the time series stationarity and the seasonal sensitivity of the cloud and clear-sky transmittances. The present point of view gives the perspective to estimate past cloud and clear-sky climatology in places where the Ångström–Prescott equation has been fitted to the sunshine data.
doi_str_mv 10.1007/s00704-021-03805-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2617109878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A688928159</galeid><sourcerecordid>A688928159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-54f5fdc2e7a48b113ee62e7935e8003c059779df1b0518e636432f2d27914c713</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi1UJKYDL8AqEisWbo8viZ0VGlUtVBoJxEXAyvI4J2lKJm5tR2J2bPoGPAsvMG_Ck-ASJDSb6kjnYn2_feSfkOcMThiAOo05gaTAGQWhoaT6EVkwKSSVUosjsgCmFFW1_vKEHMd4DQC8qtSCfP18ZVOxvxu7mML-1_b3j5_vAkbnUyrwdrKp92ORcBhiMcXCbvyUinSFhRv81BR2bHKHNtD4bZe7fmuTH3zXY3z1lDxu7RDx2b-6JJ8uzj-evaHrt68vz1Zr6oQUiZayLdvGcVRW6g1jArHKQy1K1ADCQVkrVTct20DJNFaikoK3vOGqZtIpJpbkxXzvTfC3E8Zkrv0Uxvyk4RVTDGqtdKZOZqqzA5p-bH0K1uVocNs7P2Lb5_NVpXXNNSvrLHh5IMhMwu-ps1OM5vLD-0OWz6wLPsaArbkJ-SvCzjAw9_6Y2R-T_TF__TH3G4lZFDM8dhj-7_2A6g8byJOn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617109878</pqid></control><display><type>article</type><title>What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?</title><source>SpringerNature Journals</source><creator>Paulescu, Marius ; Badescu, Viorel ; Budea, Sanda ; Dumitrescu, Alexandru</creator><creatorcontrib>Paulescu, Marius ; Badescu, Viorel ; Budea, Sanda ; Dumitrescu, Alexandru</creatorcontrib><description>The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In the present paper, we propose a different way of looking to the Ångström–Prescott equation, namely, to use it for the estimation of cloud and clear sky atmospheric transmittances. The key tools are the mathematical expressions which give the clear sky and cloud transmittances in terms of the Ångström–Prescott empirical coefficients. The theory is verified by comparing the mean all-sky atmospheric transmittance (innovatively inferred from the cloud and clear sky atmospheric transmittances) with the measured clearness index. Reasonably good concordance between the two quantities has been found. It was shown that the best performance is obtained with the linear Ångström–Prescott equation. Higher-order polynomial equations tend to overfit the measurements. Examples are also shown about how to use the linear Ångström–Prescott equation to obtain information about the time series stationarity and the seasonal sensitivity of the cloud and clear-sky transmittances. The present point of view gives the perspective to estimate past cloud and clear-sky climatology in places where the Ångström–Prescott equation has been fitted to the sunshine data.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-021-03805-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Atmospheric transmittance ; Clear sky ; Clearness index ; Climate science ; Climatology ; Clouds ; Coefficients ; Converters ; Earth and Environmental Science ; Earth Sciences ; Energy ; Ground level ; Mathematical analysis ; Original Paper ; Polynomials ; Sky ; Solar energy ; Solar energy conversion ; Sunlight ; Sunshine duration ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2022, Vol.147 (1-2), p.239-250</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-54f5fdc2e7a48b113ee62e7935e8003c059779df1b0518e636432f2d27914c713</cites><orcidid>0000-0002-3232-243X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-021-03805-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-021-03805-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Paulescu, Marius</creatorcontrib><creatorcontrib>Badescu, Viorel</creatorcontrib><creatorcontrib>Budea, Sanda</creatorcontrib><creatorcontrib>Dumitrescu, Alexandru</creatorcontrib><title>What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In the present paper, we propose a different way of looking to the Ångström–Prescott equation, namely, to use it for the estimation of cloud and clear sky atmospheric transmittances. The key tools are the mathematical expressions which give the clear sky and cloud transmittances in terms of the Ångström–Prescott empirical coefficients. The theory is verified by comparing the mean all-sky atmospheric transmittance (innovatively inferred from the cloud and clear sky atmospheric transmittances) with the measured clearness index. Reasonably good concordance between the two quantities has been found. It was shown that the best performance is obtained with the linear Ångström–Prescott equation. Higher-order polynomial equations tend to overfit the measurements. Examples are also shown about how to use the linear Ångström–Prescott equation to obtain information about the time series stationarity and the seasonal sensitivity of the cloud and clear-sky transmittances. The present point of view gives the perspective to estimate past cloud and clear-sky climatology in places where the Ångström–Prescott equation has been fitted to the sunshine data.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Atmospheric transmittance</subject><subject>Clear sky</subject><subject>Clearness index</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Clouds</subject><subject>Coefficients</subject><subject>Converters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Ground level</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Sky</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Sunlight</subject><subject>Sunshine duration</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1DAUhi1UJKYDL8AqEisWbo8viZ0VGlUtVBoJxEXAyvI4J2lKJm5tR2J2bPoGPAsvMG_Ck-ASJDSb6kjnYn2_feSfkOcMThiAOo05gaTAGQWhoaT6EVkwKSSVUosjsgCmFFW1_vKEHMd4DQC8qtSCfP18ZVOxvxu7mML-1_b3j5_vAkbnUyrwdrKp92ORcBhiMcXCbvyUinSFhRv81BR2bHKHNtD4bZe7fmuTH3zXY3z1lDxu7RDx2b-6JJ8uzj-evaHrt68vz1Zr6oQUiZayLdvGcVRW6g1jArHKQy1K1ADCQVkrVTct20DJNFaikoK3vOGqZtIpJpbkxXzvTfC3E8Zkrv0Uxvyk4RVTDGqtdKZOZqqzA5p-bH0K1uVocNs7P2Lb5_NVpXXNNSvrLHh5IMhMwu-ps1OM5vLD-0OWz6wLPsaArbkJ-SvCzjAw9_6Y2R-T_TF__TH3G4lZFDM8dhj-7_2A6g8byJOn</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Paulescu, Marius</creator><creator>Badescu, Viorel</creator><creator>Budea, Sanda</creator><creator>Dumitrescu, Alexandru</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3232-243X</orcidid></search><sort><creationdate>2022</creationdate><title>What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?</title><author>Paulescu, Marius ; Badescu, Viorel ; Budea, Sanda ; Dumitrescu, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-54f5fdc2e7a48b113ee62e7935e8003c059779df1b0518e636432f2d27914c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Atmospheric transmittance</topic><topic>Clear sky</topic><topic>Clearness index</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Clouds</topic><topic>Coefficients</topic><topic>Converters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Ground level</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Sky</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Sunlight</topic><topic>Sunshine duration</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulescu, Marius</creatorcontrib><creatorcontrib>Badescu, Viorel</creatorcontrib><creatorcontrib>Budea, Sanda</creatorcontrib><creatorcontrib>Dumitrescu, Alexandru</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulescu, Marius</au><au>Badescu, Viorel</au><au>Budea, Sanda</au><au>Dumitrescu, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2022</date><risdate>2022</risdate><volume>147</volume><issue>1-2</issue><spage>239</spage><epage>250</epage><pages>239-250</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>The Ångström–Prescott equation defines generically the relationship between solar energy available at ground level and sunshine duration. From the very beginning in the history of the solar energy converters, the equation was extensively used to estimate the amount of collectable solar energy. In the present paper, we propose a different way of looking to the Ångström–Prescott equation, namely, to use it for the estimation of cloud and clear sky atmospheric transmittances. The key tools are the mathematical expressions which give the clear sky and cloud transmittances in terms of the Ångström–Prescott empirical coefficients. The theory is verified by comparing the mean all-sky atmospheric transmittance (innovatively inferred from the cloud and clear sky atmospheric transmittances) with the measured clearness index. Reasonably good concordance between the two quantities has been found. It was shown that the best performance is obtained with the linear Ångström–Prescott equation. Higher-order polynomial equations tend to overfit the measurements. Examples are also shown about how to use the linear Ångström–Prescott equation to obtain information about the time series stationarity and the seasonal sensitivity of the cloud and clear-sky transmittances. The present point of view gives the perspective to estimate past cloud and clear-sky climatology in places where the Ångström–Prescott equation has been fitted to the sunshine data.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-021-03805-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3232-243X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2022, Vol.147 (1-2), p.239-250
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_journals_2617109878
source SpringerNature Journals
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Atmospheric transmittance
Clear sky
Clearness index
Climate science
Climatology
Clouds
Coefficients
Converters
Earth and Environmental Science
Earth Sciences
Energy
Ground level
Mathematical analysis
Original Paper
Polynomials
Sky
Solar energy
Solar energy conversion
Sunlight
Sunshine duration
Waste Water Technology
Water Management
Water Pollution Control
title What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20%C3%85ngstr%C3%B6m%E2%80%94Prescott%20equation%20tells%20us%20about%20the%20cloud%20and%20clear-sky%20climatologies?&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Paulescu,%20Marius&rft.date=2022&rft.volume=147&rft.issue=1-2&rft.spage=239&rft.epage=250&rft.pages=239-250&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-021-03805-8&rft_dat=%3Cgale_proqu%3EA688928159%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617109878&rft_id=info:pmid/&rft_galeid=A688928159&rfr_iscdi=true