Improvement of summer precipitation simulation in China by assimilating spring soil moisture over the Tibetan Plateau
The snow melting and frozen soil thawing processes in spring could lead to the significant anomaly in soil moisture (SM) over the Tibetan Plateau (TP), which has a strong influence on the interaction between land and atmosphere, and influencing the subsequent summer precipitation in China. However,...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2022, Vol.147 (1-2), p.785-801 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 801 |
---|---|
container_issue | 1-2 |
container_start_page | 785 |
container_title | Theoretical and applied climatology |
container_volume | 147 |
creator | Shen, Jiali Li, Kechen Cui, Zhiqiang zhang, Feimin Yang, Kai Wang, Chenghai |
description | The snow melting and frozen soil thawing processes in spring could lead to the significant anomaly in soil moisture (SM) over the Tibetan Plateau (TP), which has a strong influence on the interaction between land and atmosphere, and influencing the subsequent summer precipitation in China. However, there is distinct bias in SM in model simulation, influencing the surface energy and mass balance. In this study, the impacts of assimilating spring SM over the TP with indirect soil nudging (ISN) scheme on the simulation of summer precipitation in China are investigated. The results show that using the ISN method can reduce the spring SM bias over the TP, which further decreases the root mean square error (
RMSE
) of summer precipitation simulation, especially in South China, North China, northeast China, and the middle and lower Yangtze River. Compared to the experiment without assimilation, the assimilation of spring SM evidently modulates the distribution and intensity of surface sensible and latent heating over the TP, which leads to the change of Rossby wave train’s (RWT) shape and propagation direction over the TP and the downstream region, affecting the general circulation over East Asia. Specifically, the upward movement over the TP gets stronger and leads to the position of 200 hPa westerly jet which shifts to west and is closer to ERA5 reanalysis; meanwhile the location of the 500 hPa western Pacific subtropical high (WPSH) and the distribution of water vapor in Eastern China are also corrected. As a result, the precipitation simulation biases are alleviated. This study suggests that decreasing SM bias caused by the snow melting and frozen soil thawing can be an effective approach to improve the seasonal prediction skills of precipitation in China. |
doi_str_mv | 10.1007/s00704-021-03840-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2617107700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A688928165</galeid><sourcerecordid>A688928165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1e34d6b41d023f051e97fa374f60ab95577702c3e4d13de7da6b0e1ac1dcbb063</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJoJu0f6AnQU89OB1ZsmQflyUfC4GWNoHehGyPd7WspY0kh-bfRxsHyl6KQDNo3mckzUvIFwZXDEB9j3kDUUDJCuC1gKL6QBZMcFEIUfMzsgCmVKGa-s9HchHjDgBKKdWCTOvxEPwzjugS9QON0zhioIeAnT3YZJL1jkY7Tvs5tY6uttYZ2r5QE3PBHgtuQ-MhvAVv93T0NqYpIM2NA01bpA-2xWQc_ZnVaKZP5Hww-4if3-Mleby5fljdFfc_bter5X3R8aZMBUMuetkK1kPJB6gYNmowXIlBgmmbqlJKQdlxFD3jPareyBaQmY71XduC5Jfk69w3__Fpwpj0zk_B5St1KZlikHnIqqtZtTF71NYNPgXT5dXjaDvvcLD5fCnruilrJqsMfDsBsibh37QxU4x6_fvXqbactV3wMQYcdB7UaMKLZqCP3unZO52902_e6SPEZ2ieKoZ_7_4P9QopWp2R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617107700</pqid></control><display><type>article</type><title>Improvement of summer precipitation simulation in China by assimilating spring soil moisture over the Tibetan Plateau</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Jiali ; Li, Kechen ; Cui, Zhiqiang ; zhang, Feimin ; Yang, Kai ; Wang, Chenghai</creator><creatorcontrib>Shen, Jiali ; Li, Kechen ; Cui, Zhiqiang ; zhang, Feimin ; Yang, Kai ; Wang, Chenghai</creatorcontrib><description>The snow melting and frozen soil thawing processes in spring could lead to the significant anomaly in soil moisture (SM) over the Tibetan Plateau (TP), which has a strong influence on the interaction between land and atmosphere, and influencing the subsequent summer precipitation in China. However, there is distinct bias in SM in model simulation, influencing the surface energy and mass balance. In this study, the impacts of assimilating spring SM over the TP with indirect soil nudging (ISN) scheme on the simulation of summer precipitation in China are investigated. The results show that using the ISN method can reduce the spring SM bias over the TP, which further decreases the root mean square error (
RMSE
) of summer precipitation simulation, especially in South China, North China, northeast China, and the middle and lower Yangtze River. Compared to the experiment without assimilation, the assimilation of spring SM evidently modulates the distribution and intensity of surface sensible and latent heating over the TP, which leads to the change of Rossby wave train’s (RWT) shape and propagation direction over the TP and the downstream region, affecting the general circulation over East Asia. Specifically, the upward movement over the TP gets stronger and leads to the position of 200 hPa westerly jet which shifts to west and is closer to ERA5 reanalysis; meanwhile the location of the 500 hPa western Pacific subtropical high (WPSH) and the distribution of water vapor in Eastern China are also corrected. As a result, the precipitation simulation biases are alleviated. This study suggests that decreasing SM bias caused by the snow melting and frozen soil thawing can be an effective approach to improve the seasonal prediction skills of precipitation in China.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-021-03840-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Aquatic Pollution ; Assimilation ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Bias ; Climate science ; Climatology ; Distribution ; Earth and Environmental Science ; Earth Sciences ; Force and energy ; Frozen ground ; General circulation ; Mass balance ; Melting ; Original Paper ; Planetary waves ; Precipitation ; Precipitation (Meteorology) ; Root-mean-square errors ; Rossby waves ; Simulation ; Snow ; Snowmelt ; Soil ; Soil moisture ; Spring ; Spring (season) ; Summer ; Summer precipitation ; Surface energy ; Surface properties ; Thawing ; Waste Water Technology ; Water Management ; Water Pollution Control ; Water vapor ; Water vapour ; Wave propagation ; Wave trains</subject><ispartof>Theoretical and applied climatology, 2022, Vol.147 (1-2), p.785-801</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1e34d6b41d023f051e97fa374f60ab95577702c3e4d13de7da6b0e1ac1dcbb063</citedby><cites>FETCH-LOGICAL-c392t-1e34d6b41d023f051e97fa374f60ab95577702c3e4d13de7da6b0e1ac1dcbb063</cites><orcidid>0000-0002-7122-7160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-021-03840-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-021-03840-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Shen, Jiali</creatorcontrib><creatorcontrib>Li, Kechen</creatorcontrib><creatorcontrib>Cui, Zhiqiang</creatorcontrib><creatorcontrib>zhang, Feimin</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Wang, Chenghai</creatorcontrib><title>Improvement of summer precipitation simulation in China by assimilating spring soil moisture over the Tibetan Plateau</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>The snow melting and frozen soil thawing processes in spring could lead to the significant anomaly in soil moisture (SM) over the Tibetan Plateau (TP), which has a strong influence on the interaction between land and atmosphere, and influencing the subsequent summer precipitation in China. However, there is distinct bias in SM in model simulation, influencing the surface energy and mass balance. In this study, the impacts of assimilating spring SM over the TP with indirect soil nudging (ISN) scheme on the simulation of summer precipitation in China are investigated. The results show that using the ISN method can reduce the spring SM bias over the TP, which further decreases the root mean square error (
RMSE
) of summer precipitation simulation, especially in South China, North China, northeast China, and the middle and lower Yangtze River. Compared to the experiment without assimilation, the assimilation of spring SM evidently modulates the distribution and intensity of surface sensible and latent heating over the TP, which leads to the change of Rossby wave train’s (RWT) shape and propagation direction over the TP and the downstream region, affecting the general circulation over East Asia. Specifically, the upward movement over the TP gets stronger and leads to the position of 200 hPa westerly jet which shifts to west and is closer to ERA5 reanalysis; meanwhile the location of the 500 hPa western Pacific subtropical high (WPSH) and the distribution of water vapor in Eastern China are also corrected. As a result, the precipitation simulation biases are alleviated. This study suggests that decreasing SM bias caused by the snow melting and frozen soil thawing can be an effective approach to improve the seasonal prediction skills of precipitation in China.</description><subject>Analysis</subject><subject>Aquatic Pollution</subject><subject>Assimilation</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Bias</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Distribution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Force and energy</subject><subject>Frozen ground</subject><subject>General circulation</subject><subject>Mass balance</subject><subject>Melting</subject><subject>Original Paper</subject><subject>Planetary waves</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Root-mean-square errors</subject><subject>Rossby waves</subject><subject>Simulation</subject><subject>Snow</subject><subject>Snowmelt</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Summer</subject><subject>Summer precipitation</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Thawing</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water vapor</subject><subject>Water vapour</subject><subject>Wave propagation</subject><subject>Wave trains</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhkVJoJu0f6AnQU89OB1ZsmQflyUfC4GWNoHehGyPd7WspY0kh-bfRxsHyl6KQDNo3mckzUvIFwZXDEB9j3kDUUDJCuC1gKL6QBZMcFEIUfMzsgCmVKGa-s9HchHjDgBKKdWCTOvxEPwzjugS9QON0zhioIeAnT3YZJL1jkY7Tvs5tY6uttYZ2r5QE3PBHgtuQ-MhvAVv93T0NqYpIM2NA01bpA-2xWQc_ZnVaKZP5Hww-4if3-Mleby5fljdFfc_bter5X3R8aZMBUMuetkK1kPJB6gYNmowXIlBgmmbqlJKQdlxFD3jPareyBaQmY71XduC5Jfk69w3__Fpwpj0zk_B5St1KZlikHnIqqtZtTF71NYNPgXT5dXjaDvvcLD5fCnruilrJqsMfDsBsibh37QxU4x6_fvXqbactV3wMQYcdB7UaMKLZqCP3unZO52902_e6SPEZ2ieKoZ_7_4P9QopWp2R</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shen, Jiali</creator><creator>Li, Kechen</creator><creator>Cui, Zhiqiang</creator><creator>zhang, Feimin</creator><creator>Yang, Kai</creator><creator>Wang, Chenghai</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7122-7160</orcidid></search><sort><creationdate>2022</creationdate><title>Improvement of summer precipitation simulation in China by assimilating spring soil moisture over the Tibetan Plateau</title><author>Shen, Jiali ; Li, Kechen ; Cui, Zhiqiang ; zhang, Feimin ; Yang, Kai ; Wang, Chenghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1e34d6b41d023f051e97fa374f60ab95577702c3e4d13de7da6b0e1ac1dcbb063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Aquatic Pollution</topic><topic>Assimilation</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Bias</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Distribution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Force and energy</topic><topic>Frozen ground</topic><topic>General circulation</topic><topic>Mass balance</topic><topic>Melting</topic><topic>Original Paper</topic><topic>Planetary waves</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Root-mean-square errors</topic><topic>Rossby waves</topic><topic>Simulation</topic><topic>Snow</topic><topic>Snowmelt</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Summer</topic><topic>Summer precipitation</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Thawing</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water vapor</topic><topic>Water vapour</topic><topic>Wave propagation</topic><topic>Wave trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jiali</creatorcontrib><creatorcontrib>Li, Kechen</creatorcontrib><creatorcontrib>Cui, Zhiqiang</creatorcontrib><creatorcontrib>zhang, Feimin</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Wang, Chenghai</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jiali</au><au>Li, Kechen</au><au>Cui, Zhiqiang</au><au>zhang, Feimin</au><au>Yang, Kai</au><au>Wang, Chenghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of summer precipitation simulation in China by assimilating spring soil moisture over the Tibetan Plateau</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2022</date><risdate>2022</risdate><volume>147</volume><issue>1-2</issue><spage>785</spage><epage>801</epage><pages>785-801</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>The snow melting and frozen soil thawing processes in spring could lead to the significant anomaly in soil moisture (SM) over the Tibetan Plateau (TP), which has a strong influence on the interaction between land and atmosphere, and influencing the subsequent summer precipitation in China. However, there is distinct bias in SM in model simulation, influencing the surface energy and mass balance. In this study, the impacts of assimilating spring SM over the TP with indirect soil nudging (ISN) scheme on the simulation of summer precipitation in China are investigated. The results show that using the ISN method can reduce the spring SM bias over the TP, which further decreases the root mean square error (
RMSE
) of summer precipitation simulation, especially in South China, North China, northeast China, and the middle and lower Yangtze River. Compared to the experiment without assimilation, the assimilation of spring SM evidently modulates the distribution and intensity of surface sensible and latent heating over the TP, which leads to the change of Rossby wave train’s (RWT) shape and propagation direction over the TP and the downstream region, affecting the general circulation over East Asia. Specifically, the upward movement over the TP gets stronger and leads to the position of 200 hPa westerly jet which shifts to west and is closer to ERA5 reanalysis; meanwhile the location of the 500 hPa western Pacific subtropical high (WPSH) and the distribution of water vapor in Eastern China are also corrected. As a result, the precipitation simulation biases are alleviated. This study suggests that decreasing SM bias caused by the snow melting and frozen soil thawing can be an effective approach to improve the seasonal prediction skills of precipitation in China.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-021-03840-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7122-7160</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2022, Vol.147 (1-2), p.785-801 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2617107700 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Aquatic Pollution Assimilation Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Bias Climate science Climatology Distribution Earth and Environmental Science Earth Sciences Force and energy Frozen ground General circulation Mass balance Melting Original Paper Planetary waves Precipitation Precipitation (Meteorology) Root-mean-square errors Rossby waves Simulation Snow Snowmelt Soil Soil moisture Spring Spring (season) Summer Summer precipitation Surface energy Surface properties Thawing Waste Water Technology Water Management Water Pollution Control Water vapor Water vapour Wave propagation Wave trains |
title | Improvement of summer precipitation simulation in China by assimilating spring soil moisture over the Tibetan Plateau |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20summer%20precipitation%20simulation%20in%20China%20by%20assimilating%20spring%20soil%20moisture%20over%20the%20Tibetan%20Plateau&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Shen,%20Jiali&rft.date=2022&rft.volume=147&rft.issue=1-2&rft.spage=785&rft.epage=801&rft.pages=785-801&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-021-03840-5&rft_dat=%3Cgale_proqu%3EA688928165%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617107700&rft_id=info:pmid/&rft_galeid=A688928165&rfr_iscdi=true |