Edge-odd gracefulness of lict and litact graphs for few types of graphs

|E(G)| in graph G is considered to be edge-odd graceful if it has a bijective mapping f from |E(G)| to the positive integer set {1, 3, 5,…, (2q - 1) which induces the mapping f* from |V (G)| to {0, 1, 2, 3,…, 2q} is injective. Given by f*(u) Σ {f (uv) : uv ∈ E} (mod2q) with p vertices, the integers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mirajkar, K. G., Sthavarmath, P. G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2385
creator Mirajkar, K. G.
Sthavarmath, P. G.
description |E(G)| in graph G is considered to be edge-odd graceful if it has a bijective mapping f from |E(G)| to the positive integer set {1, 3, 5,…, (2q - 1) which induces the mapping f* from |V (G)| to {0, 1, 2, 3,…, 2q} is injective. Given by f*(u) Σ {f (uv) : uv ∈ E} (mod2q) with p vertices, the integers assigned to the vertices are distinct. The graph which permits an edge-odd graceful labeling is an edge-odd graceful graph. In the present article, the EOG of lict and litact graphs for few types of graphs are investigated.
doi_str_mv 10.1063/5.0070750
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2617081290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617081290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-6f33c963a25ecef89cfd20992225ba641bd10a385ad2383cd66165ae6e62484a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAm7B1kmyyyVFKrULBi4K3kOZPbambNdlV-u0bbcGbp3nM_Gbm8RC6JjAhINgdnwA00HA4QSPCOakaQcQpGgGouqI1eztHFzlvAKhqGjlC85lb-So6h1fJWB-GbetzxjHg7dr22LSuiN4UWebde8YhJhz8N-53nf_lDv1LdBbMNvurYx2j14fZy_SxWjzPn6b3i8pSkH0lAmNWCWYo9-WbVDY4CkpRSvnSiJosHQHDJDeOMsmsE8U-N154QWtZGzZGN4e7XYqfg8-93sQhteWlpoI0IAlVUKjbA5VtMd-vY6u7tP4waae_YtJcH0PSnQv_wQT0T6p_C2wPHrNnyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2617081290</pqid></control><display><type>conference_proceeding</type><title>Edge-odd gracefulness of lict and litact graphs for few types of graphs</title><source>AIP Journals Complete</source><creator>Mirajkar, K. G. ; Sthavarmath, P. G.</creator><contributor>Sunil, J.</contributor><creatorcontrib>Mirajkar, K. G. ; Sthavarmath, P. G. ; Sunil, J.</creatorcontrib><description>|E(G)| in graph G is considered to be edge-odd graceful if it has a bijective mapping f from |E(G)| to the positive integer set {1, 3, 5,…, (2q - 1) which induces the mapping f* from |V (G)| to {0, 1, 2, 3,…, 2q} is injective. Given by f*(u) Σ {f (uv) : uv ∈ E} (mod2q) with p vertices, the integers assigned to the vertices are distinct. The graph which permits an edge-odd graceful labeling is an edge-odd graceful graph. In the present article, the EOG of lict and litact graphs for few types of graphs are investigated.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0070750</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Apexes ; Graph theory ; Graphs ; Mapping</subject><ispartof>AIP conference proceedings, 2022, Vol.2385 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-6f33c963a25ecef89cfd20992225ba641bd10a385ad2383cd66165ae6e62484a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0070750$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Sunil, J.</contributor><creatorcontrib>Mirajkar, K. G.</creatorcontrib><creatorcontrib>Sthavarmath, P. G.</creatorcontrib><title>Edge-odd gracefulness of lict and litact graphs for few types of graphs</title><title>AIP conference proceedings</title><description>|E(G)| in graph G is considered to be edge-odd graceful if it has a bijective mapping f from |E(G)| to the positive integer set {1, 3, 5,…, (2q - 1) which induces the mapping f* from |V (G)| to {0, 1, 2, 3,…, 2q} is injective. Given by f*(u) Σ {f (uv) : uv ∈ E} (mod2q) with p vertices, the integers assigned to the vertices are distinct. The graph which permits an edge-odd graceful labeling is an edge-odd graceful graph. In the present article, the EOG of lict and litact graphs for few types of graphs are investigated.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mapping</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAm7B1kmyyyVFKrULBi4K3kOZPbambNdlV-u0bbcGbp3nM_Gbm8RC6JjAhINgdnwA00HA4QSPCOakaQcQpGgGouqI1eztHFzlvAKhqGjlC85lb-So6h1fJWB-GbetzxjHg7dr22LSuiN4UWebde8YhJhz8N-53nf_lDv1LdBbMNvurYx2j14fZy_SxWjzPn6b3i8pSkH0lAmNWCWYo9-WbVDY4CkpRSvnSiJosHQHDJDeOMsmsE8U-N154QWtZGzZGN4e7XYqfg8-93sQhteWlpoI0IAlVUKjbA5VtMd-vY6u7tP4waae_YtJcH0PSnQv_wQT0T6p_C2wPHrNnyw</recordid><startdate>20220106</startdate><enddate>20220106</enddate><creator>Mirajkar, K. G.</creator><creator>Sthavarmath, P. G.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220106</creationdate><title>Edge-odd gracefulness of lict and litact graphs for few types of graphs</title><author>Mirajkar, K. G. ; Sthavarmath, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-6f33c963a25ecef89cfd20992225ba641bd10a385ad2383cd66165ae6e62484a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirajkar, K. G.</creatorcontrib><creatorcontrib>Sthavarmath, P. G.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirajkar, K. G.</au><au>Sthavarmath, P. G.</au><au>Sunil, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Edge-odd gracefulness of lict and litact graphs for few types of graphs</atitle><btitle>AIP conference proceedings</btitle><date>2022-01-06</date><risdate>2022</risdate><volume>2385</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>|E(G)| in graph G is considered to be edge-odd graceful if it has a bijective mapping f from |E(G)| to the positive integer set {1, 3, 5,…, (2q - 1) which induces the mapping f* from |V (G)| to {0, 1, 2, 3,…, 2q} is injective. Given by f*(u) Σ {f (uv) : uv ∈ E} (mod2q) with p vertices, the integers assigned to the vertices are distinct. The graph which permits an edge-odd graceful labeling is an edge-odd graceful graph. In the present article, the EOG of lict and litact graphs for few types of graphs are investigated.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0070750</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2385 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2617081290
source AIP Journals Complete
subjects Apexes
Graph theory
Graphs
Mapping
title Edge-odd gracefulness of lict and litact graphs for few types of graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Edge-odd%20gracefulness%20of%20lict%20and%20litact%20graphs%20for%20few%20types%20of%20graphs&rft.btitle=AIP%20conference%20proceedings&rft.au=Mirajkar,%20K.%20G.&rft.date=2022-01-06&rft.volume=2385&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0070750&rft_dat=%3Cproquest_scita%3E2617081290%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617081290&rft_id=info:pmid/&rfr_iscdi=true