Dynamical Large Deviations for Homogeneous Systems with Long Range Interactions and the Balescu–Guernsey–Lenard Equation

We establish a large deviation principle for time dependent trajectories (paths) of the empirical density of N particles with long range interactions, for homogeneous systems. This result extends the classical kinetic theory that leads to the Balescu–Guernsey–Lenard kinetic equation, by the explicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2022-02, Vol.186 (2), Article 22
Hauptverfasser: Feliachi, Ouassim, Bouchet, Freddy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of statistical physics
container_volume 186
creator Feliachi, Ouassim
Bouchet, Freddy
description We establish a large deviation principle for time dependent trajectories (paths) of the empirical density of N particles with long range interactions, for homogeneous systems. This result extends the classical kinetic theory that leads to the Balescu–Guernsey–Lenard kinetic equation, by the explicit computation of the probability of typical and large fluctuations. The large deviation principle for the paths of the empirical density is obtained through explicit computations of a large deviation Hamiltonian. This Hamiltonian encodes all the cumulants for the fluctuations of the empirical density, after time averaging of the fast fluctuations. It satisfies a time reversal symmetry, related to the detailed balance for the stochastic process of the empirical density. This explains in a very simple way the increase of the macrostate entropy for the most probable states, while the stochastic process is time reversible, and describes the complete stochastic process at the level of large deviations.
doi_str_mv 10.1007/s10955-021-02854-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2616981782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A688814450</galeid><sourcerecordid>A688814450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8f4ee5cd16228754bc8c2bfe56b1a66ea76a955ad487031d9db8303f6f911d9b3</originalsourceid><addsrcrecordid>eNp9kctq3DAUhkVpINMkL5CVoGtPJdm6eJkm0yRgCOSyFrJ9NHGYkWYku2Wgi75D3zBPktO40F0RQhf-79x-Qs45W3LG9JfMWS1lwQTHbWRV6A9kwaUWRa14-ZEsGBOiqDSXx-RTzi-MsdrUckF-Xh2C2w6d29DGpTXQK_g-uHGIIVMfE72J27iGAHHK9OGQR9hm-mMYn2kTw5reu4DIbRghuW6GXOjp-Az0q9tA7qbXX7-vJ0ghwwGvDQSXerraT-8pTsmRd5sMZ3_PE_L0bfV4eVM0d9e3lxdN0ZXSjIXxFYDseq6EMFpWbWc60XqQquVOKXBaOeze9ZXRrOR93bemZKVXvub4assT8nmOu0txP0Ee7UucUsCUViiuasO1Eahazqo1lm6H4OOIXeHqAQcUA_gB_y-UMYZXlWQIiBnoUsw5gbe7NGxdOljO7B9b7GyLRVvsuy1WI1TOUEYxTi_9q-U_1Bt4bJN-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616981782</pqid></control><display><type>article</type><title>Dynamical Large Deviations for Homogeneous Systems with Long Range Interactions and the Balescu–Guernsey–Lenard Equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feliachi, Ouassim ; Bouchet, Freddy</creator><creatorcontrib>Feliachi, Ouassim ; Bouchet, Freddy</creatorcontrib><description>We establish a large deviation principle for time dependent trajectories (paths) of the empirical density of N particles with long range interactions, for homogeneous systems. This result extends the classical kinetic theory that leads to the Balescu–Guernsey–Lenard kinetic equation, by the explicit computation of the probability of typical and large fluctuations. The large deviation principle for the paths of the empirical density is obtained through explicit computations of a large deviation Hamiltonian. This Hamiltonian encodes all the cumulants for the fluctuations of the empirical density, after time averaging of the fast fluctuations. It satisfies a time reversal symmetry, related to the detailed balance for the stochastic process of the empirical density. This explains in a very simple way the increase of the macrostate entropy for the most probable states, while the stochastic process is time reversible, and describes the complete stochastic process at the level of large deviations.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-021-02854-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Density ; Deviation ; Kinetic equations ; Kinetic theory ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Stochastic models ; Stochastic processes ; Theoretical ; Time dependence</subject><ispartof>Journal of statistical physics, 2022-02, Vol.186 (2), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8f4ee5cd16228754bc8c2bfe56b1a66ea76a955ad487031d9db8303f6f911d9b3</citedby><cites>FETCH-LOGICAL-c358t-8f4ee5cd16228754bc8c2bfe56b1a66ea76a955ad487031d9db8303f6f911d9b3</cites><orcidid>0000-0002-1623-0818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-021-02854-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-021-02854-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Feliachi, Ouassim</creatorcontrib><creatorcontrib>Bouchet, Freddy</creatorcontrib><title>Dynamical Large Deviations for Homogeneous Systems with Long Range Interactions and the Balescu–Guernsey–Lenard Equation</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We establish a large deviation principle for time dependent trajectories (paths) of the empirical density of N particles with long range interactions, for homogeneous systems. This result extends the classical kinetic theory that leads to the Balescu–Guernsey–Lenard kinetic equation, by the explicit computation of the probability of typical and large fluctuations. The large deviation principle for the paths of the empirical density is obtained through explicit computations of a large deviation Hamiltonian. This Hamiltonian encodes all the cumulants for the fluctuations of the empirical density, after time averaging of the fast fluctuations. It satisfies a time reversal symmetry, related to the detailed balance for the stochastic process of the empirical density. This explains in a very simple way the increase of the macrostate entropy for the most probable states, while the stochastic process is time reversible, and describes the complete stochastic process at the level of large deviations.</description><subject>Density</subject><subject>Deviation</subject><subject>Kinetic equations</subject><subject>Kinetic theory</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Theoretical</subject><subject>Time dependence</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctq3DAUhkVpINMkL5CVoGtPJdm6eJkm0yRgCOSyFrJ9NHGYkWYku2Wgi75D3zBPktO40F0RQhf-79x-Qs45W3LG9JfMWS1lwQTHbWRV6A9kwaUWRa14-ZEsGBOiqDSXx-RTzi-MsdrUckF-Xh2C2w6d29DGpTXQK_g-uHGIIVMfE72J27iGAHHK9OGQR9hm-mMYn2kTw5reu4DIbRghuW6GXOjp-Az0q9tA7qbXX7-vJ0ghwwGvDQSXerraT-8pTsmRd5sMZ3_PE_L0bfV4eVM0d9e3lxdN0ZXSjIXxFYDseq6EMFpWbWc60XqQquVOKXBaOeze9ZXRrOR93bemZKVXvub4assT8nmOu0txP0Ee7UucUsCUViiuasO1Eahazqo1lm6H4OOIXeHqAQcUA_gB_y-UMYZXlWQIiBnoUsw5gbe7NGxdOljO7B9b7GyLRVvsuy1WI1TOUEYxTi_9q-U_1Bt4bJN-</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Feliachi, Ouassim</creator><creator>Bouchet, Freddy</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1623-0818</orcidid></search><sort><creationdate>20220201</creationdate><title>Dynamical Large Deviations for Homogeneous Systems with Long Range Interactions and the Balescu–Guernsey–Lenard Equation</title><author>Feliachi, Ouassim ; Bouchet, Freddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8f4ee5cd16228754bc8c2bfe56b1a66ea76a955ad487031d9db8303f6f911d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density</topic><topic>Deviation</topic><topic>Kinetic equations</topic><topic>Kinetic theory</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Theoretical</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feliachi, Ouassim</creatorcontrib><creatorcontrib>Bouchet, Freddy</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feliachi, Ouassim</au><au>Bouchet, Freddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Large Deviations for Homogeneous Systems with Long Range Interactions and the Balescu–Guernsey–Lenard Equation</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>186</volume><issue>2</issue><artnum>22</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We establish a large deviation principle for time dependent trajectories (paths) of the empirical density of N particles with long range interactions, for homogeneous systems. This result extends the classical kinetic theory that leads to the Balescu–Guernsey–Lenard kinetic equation, by the explicit computation of the probability of typical and large fluctuations. The large deviation principle for the paths of the empirical density is obtained through explicit computations of a large deviation Hamiltonian. This Hamiltonian encodes all the cumulants for the fluctuations of the empirical density, after time averaging of the fast fluctuations. It satisfies a time reversal symmetry, related to the detailed balance for the stochastic process of the empirical density. This explains in a very simple way the increase of the macrostate entropy for the most probable states, while the stochastic process is time reversible, and describes the complete stochastic process at the level of large deviations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-021-02854-7</doi><orcidid>https://orcid.org/0000-0002-1623-0818</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2022-02, Vol.186 (2), Article 22
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2616981782
source SpringerLink Journals - AutoHoldings
subjects Density
Deviation
Kinetic equations
Kinetic theory
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Stochastic models
Stochastic processes
Theoretical
Time dependence
title Dynamical Large Deviations for Homogeneous Systems with Long Range Interactions and the Balescu–Guernsey–Lenard Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Large%20Deviations%20for%20Homogeneous%20Systems%20with%20Long%20Range%20Interactions%20and%20the%20Balescu%E2%80%93Guernsey%E2%80%93Lenard%20Equation&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Feliachi,%20Ouassim&rft.date=2022-02-01&rft.volume=186&rft.issue=2&rft.artnum=22&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-021-02854-7&rft_dat=%3Cgale_proqu%3EA688814450%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616981782&rft_id=info:pmid/&rft_galeid=A688814450&rfr_iscdi=true