Model-based forecasting of twig canker incidence of bacterial spot of peach in Fukushima Prefecture

Bacterial spot caused by Xanthomonas arboricola pv. pruni ( Xap ) is the most important disease that affects peach production. A disease-forecasting model was developed to help growers decide when to apply bactericides and remove diseased, last-year twigs. To predict the incidence of “spring cankers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of general plant pathology : JGPP 2022-01, Vol.88 (1), p.41-47
Hauptverfasser: Kawaguchi, Akira, Nanaumi, Takayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 41
container_title Journal of general plant pathology : JGPP
container_volume 88
creator Kawaguchi, Akira
Nanaumi, Takayuki
description Bacterial spot caused by Xanthomonas arboricola pv. pruni ( Xap ) is the most important disease that affects peach production. A disease-forecasting model was developed to help growers decide when to apply bactericides and remove diseased, last-year twigs. To predict the incidence of “spring cankers”, peach twigs damaged by Xap , we used 12 years (2009–2020) of data from Fukushima Prefecture to develop a forecasting system using a hierarchical Bayesian model (HBM). The model included the number of fields with a bacterial spot incidence (BSI) on leaves ≥ 10% in late September of the previous season and the number of days with rain (≥ 10 mm/day) and maximum wind speed (≥ 5 m/s) during the previous October as predictors. Using a best-fit cutoff value based on a receiver operating characteristic (ROC) curve, the model achieved a 0.836 accuracy, 0.804 sensitivity, 0.847 specificity, 0.847 precision, and 0.712 F -measure. The model was validated using a fourfold cross-validation (CV) procedure and achieved an average accuracy of 0.847. Thus, the model explained 65.7% of the variability compared to observed frequencies with predicted probabilities of twig canker incidence (TCI) ≥ 2% from April to May 2009 to 2020 in Fukushima Prefecture. These results suggest that this disease-forecasting model using HBM based on 12 years of historical data can be used to predict the risk of twig cankers of bacterial spot of peach.
doi_str_mv 10.1007/s10327-021-01032-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616981741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616981741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-669a2d04503f40183864e3a54efbbe4666e4ff30a37e3c1c97368a76525554393</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Gkk4_2KItfsKIHBW8hTae73V3bNWkR_72pFbx5mpeZ550ZXkLOBb8UnJurKDhkhvFMMD5KZg7ITGjBmYHi7TBpkIplGvgxOYlxwxMJRs2If-wq3LHSRaxo3QX0LvZNu6JdTfvPZkW9a7cYaNP6psLW4zgone8xNG5H477rx84enV8niN4O2yGum3dHnwPW6Psh4Ck5qt0u4tlvnZPX25uXxT1bPt09LK6XzEOueqZ14bKKS8WhllzkkGuJ4JTEuixRaq1R1jVwBwbBC18Y0LkzWmVKKQkFzMnFtHcfuo8BY2833RDadNJmWugiF0aKRGUT5UMXY3rS7kP6N3xZwe0Ypp3CtCki-xOmNckEkykmuF1h-Fv9j-sbSeZ2ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616981741</pqid></control><display><type>article</type><title>Model-based forecasting of twig canker incidence of bacterial spot of peach in Fukushima Prefecture</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kawaguchi, Akira ; Nanaumi, Takayuki</creator><creatorcontrib>Kawaguchi, Akira ; Nanaumi, Takayuki</creatorcontrib><description>Bacterial spot caused by Xanthomonas arboricola pv. pruni ( Xap ) is the most important disease that affects peach production. A disease-forecasting model was developed to help growers decide when to apply bactericides and remove diseased, last-year twigs. To predict the incidence of “spring cankers”, peach twigs damaged by Xap , we used 12 years (2009–2020) of data from Fukushima Prefecture to develop a forecasting system using a hierarchical Bayesian model (HBM). The model included the number of fields with a bacterial spot incidence (BSI) on leaves ≥ 10% in late September of the previous season and the number of days with rain (≥ 10 mm/day) and maximum wind speed (≥ 5 m/s) during the previous October as predictors. Using a best-fit cutoff value based on a receiver operating characteristic (ROC) curve, the model achieved a 0.836 accuracy, 0.804 sensitivity, 0.847 specificity, 0.847 precision, and 0.712 F -measure. The model was validated using a fourfold cross-validation (CV) procedure and achieved an average accuracy of 0.847. Thus, the model explained 65.7% of the variability compared to observed frequencies with predicted probabilities of twig canker incidence (TCI) ≥ 2% from April to May 2009 to 2020 in Fukushima Prefecture. These results suggest that this disease-forecasting model using HBM based on 12 years of historical data can be used to predict the risk of twig cankers of bacterial spot of peach.</description><identifier>ISSN: 1345-2630</identifier><identifier>EISSN: 1610-739X</identifier><identifier>DOI: 10.1007/s10327-021-01032-7</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Agriculture ; Bacteria ; Bacterial and Phytoplasma Diseases ; Bayesian analysis ; Biomedical and Life Sciences ; Canker ; Economic forecasting ; Forecasting ; Fruits ; Life Sciences ; Mathematical models ; Microbiology ; Plant Pathology ; Spot ; Wind speed</subject><ispartof>Journal of general plant pathology : JGPP, 2022-01, Vol.88 (1), p.41-47</ispartof><rights>The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2021</rights><rights>The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-669a2d04503f40183864e3a54efbbe4666e4ff30a37e3c1c97368a76525554393</citedby><cites>FETCH-LOGICAL-c385t-669a2d04503f40183864e3a54efbbe4666e4ff30a37e3c1c97368a76525554393</cites><orcidid>0000-0002-4506-5807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10327-021-01032-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10327-021-01032-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kawaguchi, Akira</creatorcontrib><creatorcontrib>Nanaumi, Takayuki</creatorcontrib><title>Model-based forecasting of twig canker incidence of bacterial spot of peach in Fukushima Prefecture</title><title>Journal of general plant pathology : JGPP</title><addtitle>J Gen Plant Pathol</addtitle><description>Bacterial spot caused by Xanthomonas arboricola pv. pruni ( Xap ) is the most important disease that affects peach production. A disease-forecasting model was developed to help growers decide when to apply bactericides and remove diseased, last-year twigs. To predict the incidence of “spring cankers”, peach twigs damaged by Xap , we used 12 years (2009–2020) of data from Fukushima Prefecture to develop a forecasting system using a hierarchical Bayesian model (HBM). The model included the number of fields with a bacterial spot incidence (BSI) on leaves ≥ 10% in late September of the previous season and the number of days with rain (≥ 10 mm/day) and maximum wind speed (≥ 5 m/s) during the previous October as predictors. Using a best-fit cutoff value based on a receiver operating characteristic (ROC) curve, the model achieved a 0.836 accuracy, 0.804 sensitivity, 0.847 specificity, 0.847 precision, and 0.712 F -measure. The model was validated using a fourfold cross-validation (CV) procedure and achieved an average accuracy of 0.847. Thus, the model explained 65.7% of the variability compared to observed frequencies with predicted probabilities of twig canker incidence (TCI) ≥ 2% from April to May 2009 to 2020 in Fukushima Prefecture. These results suggest that this disease-forecasting model using HBM based on 12 years of historical data can be used to predict the risk of twig cankers of bacterial spot of peach.</description><subject>Agriculture</subject><subject>Bacteria</subject><subject>Bacterial and Phytoplasma Diseases</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Canker</subject><subject>Economic forecasting</subject><subject>Forecasting</subject><subject>Fruits</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Microbiology</subject><subject>Plant Pathology</subject><subject>Spot</subject><subject>Wind speed</subject><issn>1345-2630</issn><issn>1610-739X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Gkk4_2KItfsKIHBW8hTae73V3bNWkR_72pFbx5mpeZ550ZXkLOBb8UnJurKDhkhvFMMD5KZg7ITGjBmYHi7TBpkIplGvgxOYlxwxMJRs2If-wq3LHSRaxo3QX0LvZNu6JdTfvPZkW9a7cYaNP6psLW4zgone8xNG5H477rx84enV8niN4O2yGum3dHnwPW6Psh4Ck5qt0u4tlvnZPX25uXxT1bPt09LK6XzEOueqZ14bKKS8WhllzkkGuJ4JTEuixRaq1R1jVwBwbBC18Y0LkzWmVKKQkFzMnFtHcfuo8BY2833RDadNJmWugiF0aKRGUT5UMXY3rS7kP6N3xZwe0Ypp3CtCki-xOmNckEkykmuF1h-Fv9j-sbSeZ2ig</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Kawaguchi, Akira</creator><creator>Nanaumi, Takayuki</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4506-5807</orcidid></search><sort><creationdate>20220101</creationdate><title>Model-based forecasting of twig canker incidence of bacterial spot of peach in Fukushima Prefecture</title><author>Kawaguchi, Akira ; Nanaumi, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-669a2d04503f40183864e3a54efbbe4666e4ff30a37e3c1c97368a76525554393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Bacteria</topic><topic>Bacterial and Phytoplasma Diseases</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Canker</topic><topic>Economic forecasting</topic><topic>Forecasting</topic><topic>Fruits</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Microbiology</topic><topic>Plant Pathology</topic><topic>Spot</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawaguchi, Akira</creatorcontrib><creatorcontrib>Nanaumi, Takayuki</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of general plant pathology : JGPP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawaguchi, Akira</au><au>Nanaumi, Takayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based forecasting of twig canker incidence of bacterial spot of peach in Fukushima Prefecture</atitle><jtitle>Journal of general plant pathology : JGPP</jtitle><stitle>J Gen Plant Pathol</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>88</volume><issue>1</issue><spage>41</spage><epage>47</epage><pages>41-47</pages><issn>1345-2630</issn><eissn>1610-739X</eissn><abstract>Bacterial spot caused by Xanthomonas arboricola pv. pruni ( Xap ) is the most important disease that affects peach production. A disease-forecasting model was developed to help growers decide when to apply bactericides and remove diseased, last-year twigs. To predict the incidence of “spring cankers”, peach twigs damaged by Xap , we used 12 years (2009–2020) of data from Fukushima Prefecture to develop a forecasting system using a hierarchical Bayesian model (HBM). The model included the number of fields with a bacterial spot incidence (BSI) on leaves ≥ 10% in late September of the previous season and the number of days with rain (≥ 10 mm/day) and maximum wind speed (≥ 5 m/s) during the previous October as predictors. Using a best-fit cutoff value based on a receiver operating characteristic (ROC) curve, the model achieved a 0.836 accuracy, 0.804 sensitivity, 0.847 specificity, 0.847 precision, and 0.712 F -measure. The model was validated using a fourfold cross-validation (CV) procedure and achieved an average accuracy of 0.847. Thus, the model explained 65.7% of the variability compared to observed frequencies with predicted probabilities of twig canker incidence (TCI) ≥ 2% from April to May 2009 to 2020 in Fukushima Prefecture. These results suggest that this disease-forecasting model using HBM based on 12 years of historical data can be used to predict the risk of twig cankers of bacterial spot of peach.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10327-021-01032-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4506-5807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1345-2630
ispartof Journal of general plant pathology : JGPP, 2022-01, Vol.88 (1), p.41-47
issn 1345-2630
1610-739X
language eng
recordid cdi_proquest_journals_2616981741
source SpringerLink Journals - AutoHoldings
subjects Agriculture
Bacteria
Bacterial and Phytoplasma Diseases
Bayesian analysis
Biomedical and Life Sciences
Canker
Economic forecasting
Forecasting
Fruits
Life Sciences
Mathematical models
Microbiology
Plant Pathology
Spot
Wind speed
title Model-based forecasting of twig canker incidence of bacterial spot of peach in Fukushima Prefecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20forecasting%20of%20twig%20canker%20incidence%20of%20bacterial%20spot%20of%20peach%20in%20Fukushima%20Prefecture&rft.jtitle=Journal%20of%20general%20plant%20pathology%20:%20JGPP&rft.au=Kawaguchi,%20Akira&rft.date=2022-01-01&rft.volume=88&rft.issue=1&rft.spage=41&rft.epage=47&rft.pages=41-47&rft.issn=1345-2630&rft.eissn=1610-739X&rft_id=info:doi/10.1007/s10327-021-01032-7&rft_dat=%3Cproquest_cross%3E2616981741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616981741&rft_id=info:pmid/&rfr_iscdi=true