On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2
We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime p if the level at p is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2022-01, Vol.167 (1-2), p.263-343 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 1-2 |
container_start_page | 263 |
container_title | Manuscripta mathematica |
container_volume | 167 |
creator | Oki, Yasuhiro |
description | We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime
p
if the level at
p
is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and every irreducible component is birational to the Fermat surface. Furthermore, we have an estimation of the numbers of connected and irreducible components. To prove these assertions, we completely determine the structure of the underlying reduced scheme of the Rapoport–Zink space for the quaternionic unitary similitude group of degree 2, with a special parahoric level. We prove that such a scheme is purely 2-dimensional, and every irreducible component is isomorphic to the Fermat surface. We also determine its connected components, irreducible components and their intersection behaviors by means of the Bruhat–Tits building of
PGSp
4
(
Q
p
)
. In addition, we compute the intersection multiplicity of the GGP cycles associated to an embedding of the considering Rapoport–Zink space into the Rapoport–Zink space for the unramified
GU
2
,
2
with hyperspecial level for the minuscule case. |
doi_str_mv | 10.1007/s00229-020-01265-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616981629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616981629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-ac00a1a3b3f86b0425c45afb36f16017342af5f72d4d0ac30ec65b1f2a58448d3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5A5wscQ6M1yRHVLFJlXpguVqOYwdXbZzaCRL_HpcgceM0h_e-NzMPoSsCNwSgvE0AlNYFUCiAUCkKfoQWhDNakLISx2iRdVFQScgpOktpA5DFki3Q-7rHaRpsTL7vpq2OeBuMx8Hhlw-_m6LGnzp6O3qbsAsR7yc92tj70HuDp96POn7hLoZpSAeotV20FtMLdOL0NtnL33mO3h7uX5dPxWr9-Ly8WxWG03ostAHQRLOGuUo2wKkwXGjXMOmIBFIyTrUTrqQtb0EbBtZI0RBHtag4r1p2jq7n3CGG_WTTqDZhin1eqfKzsq6IpHV20dllYkgpWqeG6Hf5ckVAHfpTc38q96d--lM8Q2yGUjb3nY1_0f9Q33F4czo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616981629</pqid></control><display><type>article</type><title>On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2</title><source>SpringerLink Journals</source><creator>Oki, Yasuhiro</creator><creatorcontrib>Oki, Yasuhiro</creatorcontrib><description>We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime
p
if the level at
p
is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and every irreducible component is birational to the Fermat surface. Furthermore, we have an estimation of the numbers of connected and irreducible components. To prove these assertions, we completely determine the structure of the underlying reduced scheme of the Rapoport–Zink space for the quaternionic unitary similitude group of degree 2, with a special parahoric level. We prove that such a scheme is purely 2-dimensional, and every irreducible component is isomorphic to the Fermat surface. We also determine its connected components, irreducible components and their intersection behaviors by means of the Bruhat–Tits building of
PGSp
4
(
Q
p
)
. In addition, we compute the intersection multiplicity of the GGP cycles associated to an embedding of the considering Rapoport–Zink space into the Rapoport–Zink space for the unramified
GU
2
,
2
with hyperspecial level for the minuscule case.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-020-01265-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Intersections ; Lie Groups ; Loci ; Mathematics ; Mathematics and Statistics ; Number Theory ; Subgroups ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-01, Vol.167 (1-2), p.263-343</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-ac00a1a3b3f86b0425c45afb36f16017342af5f72d4d0ac30ec65b1f2a58448d3</citedby><cites>FETCH-LOGICAL-c429t-ac00a1a3b3f86b0425c45afb36f16017342af5f72d4d0ac30ec65b1f2a58448d3</cites><orcidid>0000-0003-3038-4298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-020-01265-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-020-01265-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Oki, Yasuhiro</creatorcontrib><title>On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime
p
if the level at
p
is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and every irreducible component is birational to the Fermat surface. Furthermore, we have an estimation of the numbers of connected and irreducible components. To prove these assertions, we completely determine the structure of the underlying reduced scheme of the Rapoport–Zink space for the quaternionic unitary similitude group of degree 2, with a special parahoric level. We prove that such a scheme is purely 2-dimensional, and every irreducible component is isomorphic to the Fermat surface. We also determine its connected components, irreducible components and their intersection behaviors by means of the Bruhat–Tits building of
PGSp
4
(
Q
p
)
. In addition, we compute the intersection multiplicity of the GGP cycles associated to an embedding of the considering Rapoport–Zink space into the Rapoport–Zink space for the unramified
GU
2
,
2
with hyperspecial level for the minuscule case.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Intersections</subject><subject>Lie Groups</subject><subject>Loci</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Subgroups</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEmX5A5wscQ6M1yRHVLFJlXpguVqOYwdXbZzaCRL_HpcgceM0h_e-NzMPoSsCNwSgvE0AlNYFUCiAUCkKfoQWhDNakLISx2iRdVFQScgpOktpA5DFki3Q-7rHaRpsTL7vpq2OeBuMx8Hhlw-_m6LGnzp6O3qbsAsR7yc92tj70HuDp96POn7hLoZpSAeotV20FtMLdOL0NtnL33mO3h7uX5dPxWr9-Ly8WxWG03ostAHQRLOGuUo2wKkwXGjXMOmIBFIyTrUTrqQtb0EbBtZI0RBHtag4r1p2jq7n3CGG_WTTqDZhin1eqfKzsq6IpHV20dllYkgpWqeG6Hf5ckVAHfpTc38q96d--lM8Q2yGUjb3nY1_0f9Q33F4czo</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Oki, Yasuhiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3038-4298</orcidid></search><sort><creationdate>20220101</creationdate><title>On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2</title><author>Oki, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-ac00a1a3b3f86b0425c45afb36f16017342af5f72d4d0ac30ec65b1f2a58448d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Intersections</topic><topic>Lie Groups</topic><topic>Loci</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Subgroups</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oki, Yasuhiro</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oki, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>167</volume><issue>1-2</issue><spage>263</spage><epage>343</epage><pages>263-343</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime
p
if the level at
p
is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and every irreducible component is birational to the Fermat surface. Furthermore, we have an estimation of the numbers of connected and irreducible components. To prove these assertions, we completely determine the structure of the underlying reduced scheme of the Rapoport–Zink space for the quaternionic unitary similitude group of degree 2, with a special parahoric level. We prove that such a scheme is purely 2-dimensional, and every irreducible component is isomorphic to the Fermat surface. We also determine its connected components, irreducible components and their intersection behaviors by means of the Bruhat–Tits building of
PGSp
4
(
Q
p
)
. In addition, we compute the intersection multiplicity of the GGP cycles associated to an embedding of the considering Rapoport–Zink space into the Rapoport–Zink space for the unramified
GU
2
,
2
with hyperspecial level for the minuscule case.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-020-01265-4</doi><tpages>81</tpages><orcidid>https://orcid.org/0000-0003-3038-4298</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2022-01, Vol.167 (1-2), p.263-343 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2616981629 |
source | SpringerLink Journals |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Geometry Intersections Lie Groups Loci Mathematics Mathematics and Statistics Number Theory Subgroups Topological Groups |
title | On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20supersingular%20loci%20of%20Shimura%20varieties%20for%20quaternionic%20unitary%20groups%20of%20degree%202&rft.jtitle=Manuscripta%20mathematica&rft.au=Oki,%20Yasuhiro&rft.date=2022-01-01&rft.volume=167&rft.issue=1-2&rft.spage=263&rft.epage=343&rft.pages=263-343&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-020-01265-4&rft_dat=%3Cproquest_cross%3E2616981629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616981629&rft_id=info:pmid/&rfr_iscdi=true |