On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2

We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime p if the level at p is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2022-01, Vol.167 (1-2), p.263-343
1. Verfasser: Oki, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 1-2
container_start_page 263
container_title Manuscripta mathematica
container_volume 167
creator Oki, Yasuhiro
description We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime p if the level at p is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and every irreducible component is birational to the Fermat surface. Furthermore, we have an estimation of the numbers of connected and irreducible components. To prove these assertions, we completely determine the structure of the underlying reduced scheme of the Rapoport–Zink space for the quaternionic unitary similitude group of degree 2, with a special parahoric level. We prove that such a scheme is purely 2-dimensional, and every irreducible component is isomorphic to the Fermat surface. We also determine its connected components, irreducible components and their intersection behaviors by means of the Bruhat–Tits building of PGSp 4 ( Q p ) . In addition, we compute the intersection multiplicity of the GGP cycles associated to an embedding of the considering Rapoport–Zink space into the Rapoport–Zink space for the unramified GU 2 , 2 with hyperspecial level for the minuscule case.
doi_str_mv 10.1007/s00229-020-01265-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616981629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616981629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-ac00a1a3b3f86b0425c45afb36f16017342af5f72d4d0ac30ec65b1f2a58448d3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5A5wscQ6M1yRHVLFJlXpguVqOYwdXbZzaCRL_HpcgceM0h_e-NzMPoSsCNwSgvE0AlNYFUCiAUCkKfoQWhDNakLISx2iRdVFQScgpOktpA5DFki3Q-7rHaRpsTL7vpq2OeBuMx8Hhlw-_m6LGnzp6O3qbsAsR7yc92tj70HuDp96POn7hLoZpSAeotV20FtMLdOL0NtnL33mO3h7uX5dPxWr9-Ly8WxWG03ostAHQRLOGuUo2wKkwXGjXMOmIBFIyTrUTrqQtb0EbBtZI0RBHtag4r1p2jq7n3CGG_WTTqDZhin1eqfKzsq6IpHV20dllYkgpWqeG6Hf5ckVAHfpTc38q96d--lM8Q2yGUjb3nY1_0f9Q33F4czo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616981629</pqid></control><display><type>article</type><title>On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2</title><source>SpringerLink Journals</source><creator>Oki, Yasuhiro</creator><creatorcontrib>Oki, Yasuhiro</creatorcontrib><description>We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime p if the level at p is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and every irreducible component is birational to the Fermat surface. Furthermore, we have an estimation of the numbers of connected and irreducible components. To prove these assertions, we completely determine the structure of the underlying reduced scheme of the Rapoport–Zink space for the quaternionic unitary similitude group of degree 2, with a special parahoric level. We prove that such a scheme is purely 2-dimensional, and every irreducible component is isomorphic to the Fermat surface. We also determine its connected components, irreducible components and their intersection behaviors by means of the Bruhat–Tits building of PGSp 4 ( Q p ) . In addition, we compute the intersection multiplicity of the GGP cycles associated to an embedding of the considering Rapoport–Zink space into the Rapoport–Zink space for the unramified GU 2 , 2 with hyperspecial level for the minuscule case.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-020-01265-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Intersections ; Lie Groups ; Loci ; Mathematics ; Mathematics and Statistics ; Number Theory ; Subgroups ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-01, Vol.167 (1-2), p.263-343</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-ac00a1a3b3f86b0425c45afb36f16017342af5f72d4d0ac30ec65b1f2a58448d3</citedby><cites>FETCH-LOGICAL-c429t-ac00a1a3b3f86b0425c45afb36f16017342af5f72d4d0ac30ec65b1f2a58448d3</cites><orcidid>0000-0003-3038-4298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-020-01265-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-020-01265-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Oki, Yasuhiro</creatorcontrib><title>On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime p if the level at p is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and every irreducible component is birational to the Fermat surface. Furthermore, we have an estimation of the numbers of connected and irreducible components. To prove these assertions, we completely determine the structure of the underlying reduced scheme of the Rapoport–Zink space for the quaternionic unitary similitude group of degree 2, with a special parahoric level. We prove that such a scheme is purely 2-dimensional, and every irreducible component is isomorphic to the Fermat surface. We also determine its connected components, irreducible components and their intersection behaviors by means of the Bruhat–Tits building of PGSp 4 ( Q p ) . In addition, we compute the intersection multiplicity of the GGP cycles associated to an embedding of the considering Rapoport–Zink space into the Rapoport–Zink space for the unramified GU 2 , 2 with hyperspecial level for the minuscule case.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Intersections</subject><subject>Lie Groups</subject><subject>Loci</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Subgroups</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEmX5A5wscQ6M1yRHVLFJlXpguVqOYwdXbZzaCRL_HpcgceM0h_e-NzMPoSsCNwSgvE0AlNYFUCiAUCkKfoQWhDNakLISx2iRdVFQScgpOktpA5DFki3Q-7rHaRpsTL7vpq2OeBuMx8Hhlw-_m6LGnzp6O3qbsAsR7yc92tj70HuDp96POn7hLoZpSAeotV20FtMLdOL0NtnL33mO3h7uX5dPxWr9-Ly8WxWG03ostAHQRLOGuUo2wKkwXGjXMOmIBFIyTrUTrqQtb0EbBtZI0RBHtag4r1p2jq7n3CGG_WTTqDZhin1eqfKzsq6IpHV20dllYkgpWqeG6Hf5ckVAHfpTc38q96d--lM8Q2yGUjb3nY1_0f9Q33F4czo</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Oki, Yasuhiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3038-4298</orcidid></search><sort><creationdate>20220101</creationdate><title>On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2</title><author>Oki, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-ac00a1a3b3f86b0425c45afb36f16017342af5f72d4d0ac30ec65b1f2a58448d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Intersections</topic><topic>Lie Groups</topic><topic>Loci</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Subgroups</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oki, Yasuhiro</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oki, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>167</volume><issue>1-2</issue><spage>263</spage><epage>343</epage><pages>263-343</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We describe the structure of the supersingular locus of a Shimura variety for a quaternionic unitary similitude group of degree 2 over a ramified odd prime p if the level at p is given by a special maximal compact open subgroup. More precisely, we show that such a locus is purely 2-dimensional, and every irreducible component is birational to the Fermat surface. Furthermore, we have an estimation of the numbers of connected and irreducible components. To prove these assertions, we completely determine the structure of the underlying reduced scheme of the Rapoport–Zink space for the quaternionic unitary similitude group of degree 2, with a special parahoric level. We prove that such a scheme is purely 2-dimensional, and every irreducible component is isomorphic to the Fermat surface. We also determine its connected components, irreducible components and their intersection behaviors by means of the Bruhat–Tits building of PGSp 4 ( Q p ) . In addition, we compute the intersection multiplicity of the GGP cycles associated to an embedding of the considering Rapoport–Zink space into the Rapoport–Zink space for the unramified GU 2 , 2 with hyperspecial level for the minuscule case.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-020-01265-4</doi><tpages>81</tpages><orcidid>https://orcid.org/0000-0003-3038-4298</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2022-01, Vol.167 (1-2), p.263-343
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2616981629
source SpringerLink Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Geometry
Intersections
Lie Groups
Loci
Mathematics
Mathematics and Statistics
Number Theory
Subgroups
Topological Groups
title On supersingular loci of Shimura varieties for quaternionic unitary groups of degree 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20supersingular%20loci%20of%20Shimura%20varieties%20for%20quaternionic%20unitary%20groups%20of%20degree%202&rft.jtitle=Manuscripta%20mathematica&rft.au=Oki,%20Yasuhiro&rft.date=2022-01-01&rft.volume=167&rft.issue=1-2&rft.spage=263&rft.epage=343&rft.pages=263-343&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-020-01265-4&rft_dat=%3Cproquest_cross%3E2616981629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616981629&rft_id=info:pmid/&rfr_iscdi=true