Formation of Carbon Nanotubes and Microsilica during the Production of Crystalline Silicon in Three-Phase Ore-Thermal Furnaces

The annually generated waste of silicon production in Irkutsk oblast equals 20 000 t/year, and the volume of waste accumulated in the three sludge fields of JSC Silicon exceeds 3 million m 3 . The dust from the gas cleaning systems of the ore-thermal furnaces is the main waste type of the crystallin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of non-ferrous metals 2021-11, Vol.62 (6), p.771-777
Hauptverfasser: Kuz’min, M. P., Kondratiev, V. V., Kuz’mina, A. S., Burdonov, A. E., Ran, Jia Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 6
container_start_page 771
container_title Russian journal of non-ferrous metals
container_volume 62
creator Kuz’min, M. P.
Kondratiev, V. V.
Kuz’mina, A. S.
Burdonov, A. E.
Ran, Jia Q.
description The annually generated waste of silicon production in Irkutsk oblast equals 20 000 t/year, and the volume of waste accumulated in the three sludge fields of JSC Silicon exceeds 3 million m 3 . The dust from the gas cleaning systems of the ore-thermal furnaces is the main waste type of the crystalline silicon production. In that regard, this work presents a study of the chemical composition of the dust and the possibilities of using its valuable components: amorphous silica and carbon nanotubes (CNTs). The possibility of separating this product by flotation into three components—the sand fraction, the flotation tailings enriched in SiO 2 , and the froth product enriched in CNT-type carbon—is shown. We have studied the CNT structure and determined the following physicomechanical properties: the elasticity modulus (2000 GPa), the ultimate strength (75 GPa), and the thermal conductivity (4000 W/(m K)). The heat amount required to obtain 1 kg of CNTs in ore-thermal furnaces is calculated. On the base of a material balance of technical silicon electrosmelting, we found that, during the endothermic process, 153 kg of CNTs are formed per 1 t of crystalline silicon, as well as 336 kg of the flotation tailings containing 75% of the amorphous microsilica (AMS) particles. From calculations of the heat effect and the Gibbs energy of the AMS formation reactions, we reveal that all processes are exothermic, and the oxidation process of the silicon carbide particles by air oxygen (2SiC + 3O 2 → 2SiO 2 + 2CO) has the highest thermodynamic probability. We calculate the economic efficiency of the amorphous silica use for the foundry silumin production and demonstrate the results: fast payback period (6 months) and high profitability level ($819 672).
doi_str_mv 10.3103/S1067821221060134
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616981568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616981568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-a47101d270378ad39a2ee52486f316c86b6f2d4025d21531c6acfe374da0bac03</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMcHcLPEOeBH4iRHVFFAKrRSi8Qt2jgb4iqNi50ceuHbcVQEB8RpRzsz-xhCrji7kZzJ2xVnKs0EFyIAxmV8RCY8l3GUp-ztOOBARyN_Ss683zCWJHmST8jnzLot9MZ21NZ0Cq4M6AU62w8legpdRZ-Ndtab1mig1eBM9077BunS2WrQP0639z20remQrkZtaJuOrhuHGC0b8EgXDqN1g2FdS2eD60CjvyAnNbQeL7_rOXmd3a-nj9F88fA0vZtHWqisjyBOOeOVSJlMM6hkDgIxEXGmasmVzlSpalHFTCSV4InkWoGuUaZxBawEzeQ5uT7M3Tn7MaDvi40dT2h9IRRXecYTlQUVP6jGh73Dutg5swW3LzgrxpiLPzEHjzh4_G6MBt3v5P9NX7Qcf3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616981568</pqid></control><display><type>article</type><title>Formation of Carbon Nanotubes and Microsilica during the Production of Crystalline Silicon in Three-Phase Ore-Thermal Furnaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kuz’min, M. P. ; Kondratiev, V. V. ; Kuz’mina, A. S. ; Burdonov, A. E. ; Ran, Jia Q.</creator><creatorcontrib>Kuz’min, M. P. ; Kondratiev, V. V. ; Kuz’mina, A. S. ; Burdonov, A. E. ; Ran, Jia Q.</creatorcontrib><description>The annually generated waste of silicon production in Irkutsk oblast equals 20 000 t/year, and the volume of waste accumulated in the three sludge fields of JSC Silicon exceeds 3 million m 3 . The dust from the gas cleaning systems of the ore-thermal furnaces is the main waste type of the crystalline silicon production. In that regard, this work presents a study of the chemical composition of the dust and the possibilities of using its valuable components: amorphous silica and carbon nanotubes (CNTs). The possibility of separating this product by flotation into three components—the sand fraction, the flotation tailings enriched in SiO 2 , and the froth product enriched in CNT-type carbon—is shown. We have studied the CNT structure and determined the following physicomechanical properties: the elasticity modulus (2000 GPa), the ultimate strength (75 GPa), and the thermal conductivity (4000 W/(m K)). The heat amount required to obtain 1 kg of CNTs in ore-thermal furnaces is calculated. On the base of a material balance of technical silicon electrosmelting, we found that, during the endothermic process, 153 kg of CNTs are formed per 1 t of crystalline silicon, as well as 336 kg of the flotation tailings containing 75% of the amorphous microsilica (AMS) particles. From calculations of the heat effect and the Gibbs energy of the AMS formation reactions, we reveal that all processes are exothermic, and the oxidation process of the silicon carbide particles by air oxygen (2SiC + 3O 2 → 2SiO 2 + 2CO) has the highest thermodynamic probability. We calculate the economic efficiency of the amorphous silica use for the foundry silumin production and demonstrate the results: fast payback period (6 months) and high profitability level ($819 672).</description><identifier>ISSN: 1067-8212</identifier><identifier>EISSN: 1934-970X</identifier><identifier>DOI: 10.3103/S1067821221060134</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Carbon ; Carbon nanotubes ; Chemical composition ; Chemistry and Materials Science ; Crystal structure ; Crystallinity ; Dust ; Endothermic reactions ; Exothermic reactions ; Flotation ; Furnaces ; High temperature effects ; Material balance ; Materials Science ; Mathematical analysis ; Metallic Materials ; Oxidation ; Payback periods ; Production Processes and Properties of Powders ; Profitability ; Silica fume ; Silicon ; Silicon carbide ; Silicon dioxide ; Sludge ; Tailings ; Thermal conductivity ; Ultimate tensile strength</subject><ispartof>Russian journal of non-ferrous metals, 2021-11, Vol.62 (6), p.771-777</ispartof><rights>Allerton Press, Inc. 2021. ISSN 1067-8212, Russian Journal of Non-Ferrous Metals, 2021, Vol. 62, No. 6, pp. 771–777. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2021, No. 3, pp. 4–13.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-a47101d270378ad39a2ee52486f316c86b6f2d4025d21531c6acfe374da0bac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1067821221060134$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1067821221060134$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kuz’min, M. P.</creatorcontrib><creatorcontrib>Kondratiev, V. V.</creatorcontrib><creatorcontrib>Kuz’mina, A. S.</creatorcontrib><creatorcontrib>Burdonov, A. E.</creatorcontrib><creatorcontrib>Ran, Jia Q.</creatorcontrib><title>Formation of Carbon Nanotubes and Microsilica during the Production of Crystalline Silicon in Three-Phase Ore-Thermal Furnaces</title><title>Russian journal of non-ferrous metals</title><addtitle>Russ. J. Non-ferrous Metals</addtitle><description>The annually generated waste of silicon production in Irkutsk oblast equals 20 000 t/year, and the volume of waste accumulated in the three sludge fields of JSC Silicon exceeds 3 million m 3 . The dust from the gas cleaning systems of the ore-thermal furnaces is the main waste type of the crystalline silicon production. In that regard, this work presents a study of the chemical composition of the dust and the possibilities of using its valuable components: amorphous silica and carbon nanotubes (CNTs). The possibility of separating this product by flotation into three components—the sand fraction, the flotation tailings enriched in SiO 2 , and the froth product enriched in CNT-type carbon—is shown. We have studied the CNT structure and determined the following physicomechanical properties: the elasticity modulus (2000 GPa), the ultimate strength (75 GPa), and the thermal conductivity (4000 W/(m K)). The heat amount required to obtain 1 kg of CNTs in ore-thermal furnaces is calculated. On the base of a material balance of technical silicon electrosmelting, we found that, during the endothermic process, 153 kg of CNTs are formed per 1 t of crystalline silicon, as well as 336 kg of the flotation tailings containing 75% of the amorphous microsilica (AMS) particles. From calculations of the heat effect and the Gibbs energy of the AMS formation reactions, we reveal that all processes are exothermic, and the oxidation process of the silicon carbide particles by air oxygen (2SiC + 3O 2 → 2SiO 2 + 2CO) has the highest thermodynamic probability. We calculate the economic efficiency of the amorphous silica use for the foundry silumin production and demonstrate the results: fast payback period (6 months) and high profitability level ($819 672).</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dust</subject><subject>Endothermic reactions</subject><subject>Exothermic reactions</subject><subject>Flotation</subject><subject>Furnaces</subject><subject>High temperature effects</subject><subject>Material balance</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Oxidation</subject><subject>Payback periods</subject><subject>Production Processes and Properties of Powders</subject><subject>Profitability</subject><subject>Silica fume</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Silicon dioxide</subject><subject>Sludge</subject><subject>Tailings</subject><subject>Thermal conductivity</subject><subject>Ultimate tensile strength</subject><issn>1067-8212</issn><issn>1934-970X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMcHcLPEOeBH4iRHVFFAKrRSi8Qt2jgb4iqNi50ceuHbcVQEB8RpRzsz-xhCrji7kZzJ2xVnKs0EFyIAxmV8RCY8l3GUp-ztOOBARyN_Ss683zCWJHmST8jnzLot9MZ21NZ0Cq4M6AU62w8legpdRZ-Ndtab1mig1eBM9077BunS2WrQP0639z20remQrkZtaJuOrhuHGC0b8EgXDqN1g2FdS2eD60CjvyAnNbQeL7_rOXmd3a-nj9F88fA0vZtHWqisjyBOOeOVSJlMM6hkDgIxEXGmasmVzlSpalHFTCSV4InkWoGuUaZxBawEzeQ5uT7M3Tn7MaDvi40dT2h9IRRXecYTlQUVP6jGh73Dutg5swW3LzgrxpiLPzEHjzh4_G6MBt3v5P9NX7Qcf3I</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Kuz’min, M. P.</creator><creator>Kondratiev, V. V.</creator><creator>Kuz’mina, A. S.</creator><creator>Burdonov, A. E.</creator><creator>Ran, Jia Q.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211101</creationdate><title>Formation of Carbon Nanotubes and Microsilica during the Production of Crystalline Silicon in Three-Phase Ore-Thermal Furnaces</title><author>Kuz’min, M. P. ; Kondratiev, V. V. ; Kuz’mina, A. S. ; Burdonov, A. E. ; Ran, Jia Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-a47101d270378ad39a2ee52486f316c86b6f2d4025d21531c6acfe374da0bac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dust</topic><topic>Endothermic reactions</topic><topic>Exothermic reactions</topic><topic>Flotation</topic><topic>Furnaces</topic><topic>High temperature effects</topic><topic>Material balance</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Oxidation</topic><topic>Payback periods</topic><topic>Production Processes and Properties of Powders</topic><topic>Profitability</topic><topic>Silica fume</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Silicon dioxide</topic><topic>Sludge</topic><topic>Tailings</topic><topic>Thermal conductivity</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuz’min, M. P.</creatorcontrib><creatorcontrib>Kondratiev, V. V.</creatorcontrib><creatorcontrib>Kuz’mina, A. S.</creatorcontrib><creatorcontrib>Burdonov, A. E.</creatorcontrib><creatorcontrib>Ran, Jia Q.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian journal of non-ferrous metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuz’min, M. P.</au><au>Kondratiev, V. V.</au><au>Kuz’mina, A. S.</au><au>Burdonov, A. E.</au><au>Ran, Jia Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Carbon Nanotubes and Microsilica during the Production of Crystalline Silicon in Three-Phase Ore-Thermal Furnaces</atitle><jtitle>Russian journal of non-ferrous metals</jtitle><stitle>Russ. J. Non-ferrous Metals</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>62</volume><issue>6</issue><spage>771</spage><epage>777</epage><pages>771-777</pages><issn>1067-8212</issn><eissn>1934-970X</eissn><abstract>The annually generated waste of silicon production in Irkutsk oblast equals 20 000 t/year, and the volume of waste accumulated in the three sludge fields of JSC Silicon exceeds 3 million m 3 . The dust from the gas cleaning systems of the ore-thermal furnaces is the main waste type of the crystalline silicon production. In that regard, this work presents a study of the chemical composition of the dust and the possibilities of using its valuable components: amorphous silica and carbon nanotubes (CNTs). The possibility of separating this product by flotation into three components—the sand fraction, the flotation tailings enriched in SiO 2 , and the froth product enriched in CNT-type carbon—is shown. We have studied the CNT structure and determined the following physicomechanical properties: the elasticity modulus (2000 GPa), the ultimate strength (75 GPa), and the thermal conductivity (4000 W/(m K)). The heat amount required to obtain 1 kg of CNTs in ore-thermal furnaces is calculated. On the base of a material balance of technical silicon electrosmelting, we found that, during the endothermic process, 153 kg of CNTs are formed per 1 t of crystalline silicon, as well as 336 kg of the flotation tailings containing 75% of the amorphous microsilica (AMS) particles. From calculations of the heat effect and the Gibbs energy of the AMS formation reactions, we reveal that all processes are exothermic, and the oxidation process of the silicon carbide particles by air oxygen (2SiC + 3O 2 → 2SiO 2 + 2CO) has the highest thermodynamic probability. We calculate the economic efficiency of the amorphous silica use for the foundry silumin production and demonstrate the results: fast payback period (6 months) and high profitability level ($819 672).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1067821221060134</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1067-8212
ispartof Russian journal of non-ferrous metals, 2021-11, Vol.62 (6), p.771-777
issn 1067-8212
1934-970X
language eng
recordid cdi_proquest_journals_2616981568
source SpringerLink Journals - AutoHoldings
subjects Carbon
Carbon nanotubes
Chemical composition
Chemistry and Materials Science
Crystal structure
Crystallinity
Dust
Endothermic reactions
Exothermic reactions
Flotation
Furnaces
High temperature effects
Material balance
Materials Science
Mathematical analysis
Metallic Materials
Oxidation
Payback periods
Production Processes and Properties of Powders
Profitability
Silica fume
Silicon
Silicon carbide
Silicon dioxide
Sludge
Tailings
Thermal conductivity
Ultimate tensile strength
title Formation of Carbon Nanotubes and Microsilica during the Production of Crystalline Silicon in Three-Phase Ore-Thermal Furnaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Carbon%20Nanotubes%20and%20Microsilica%20during%20the%20Production%20of%20Crystalline%20Silicon%20in%20Three-Phase%20Ore-Thermal%20Furnaces&rft.jtitle=Russian%20journal%20of%20non-ferrous%20metals&rft.au=Kuz%E2%80%99min,%20M.%20P.&rft.date=2021-11-01&rft.volume=62&rft.issue=6&rft.spage=771&rft.epage=777&rft.pages=771-777&rft.issn=1067-8212&rft.eissn=1934-970X&rft_id=info:doi/10.3103/S1067821221060134&rft_dat=%3Cproquest_cross%3E2616981568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616981568&rft_id=info:pmid/&rfr_iscdi=true