Geometry of varieties for graded maximal Cohen–Macaulay modules

We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2022-01, Vol.167 (1-2), p.377-384
1. Verfasser: Hiramatsu, Naoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 1-2
container_start_page 377
container_title Manuscripta mathematica
container_volume 167
creator Hiramatsu, Naoya
description We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of graded countable representation type.
doi_str_mv 10.1007/s00229-021-01282-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616980651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616980651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2082a252076d84044c1b47d00652dea0a07108c2810f0c7cd133196fab224d233</originalsourceid><addsrcrecordid>eNp9kL1OwzAQxy0EEqXwAkyRmA135yROx6riSypigdlybae0SupiJ6jdeAfekCfBECQ2phv-H3f3Y-wc4RIB5FUEIJpwIOSAVBHfHbAR5oI4yqo4ZKOkF5xKxGN2EuMaIIlSjNj01vnWdWGf-Tp702HlupWLWe1DtgzaOpu1erdqdZPN_IvbfL5_PGij-0bvs9bbvnHxlB3Vuonu7HeO2fPN9dPsjs8fb-9n0zk3QpQdJ6hIU0EgS1vlkOcGF7m0AGVB1mnQIBEqQxVCDUYai0LgpKz1gii3JMSYXQy92-Bfexc7tfZ92KSVKv1VTqrUhMlFg8sEH2NwtdqGdH7YKwT1jUoNqFRCpX5QqV0KiSEUk3mzdOGv-p_UF5RBa44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616980651</pqid></control><display><type>article</type><title>Geometry of varieties for graded maximal Cohen–Macaulay modules</title><source>SpringerLink Journals</source><creator>Hiramatsu, Naoya</creator><creatorcontrib>Hiramatsu, Naoya</creatorcontrib><description>We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of graded countable representation type.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-021-01282-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Isomorphism ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Modules ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-01, Vol.167 (1-2), p.377-384</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-2082a252076d84044c1b47d00652dea0a07108c2810f0c7cd133196fab224d233</cites><orcidid>0000-0002-7341-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-021-01282-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-021-01282-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hiramatsu, Naoya</creatorcontrib><title>Geometry of varieties for graded maximal Cohen–Macaulay modules</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of graded countable representation type.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Isomorphism</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQxy0EEqXwAkyRmA135yROx6riSypigdlybae0SupiJ6jdeAfekCfBECQ2phv-H3f3Y-wc4RIB5FUEIJpwIOSAVBHfHbAR5oI4yqo4ZKOkF5xKxGN2EuMaIIlSjNj01vnWdWGf-Tp702HlupWLWe1DtgzaOpu1erdqdZPN_IvbfL5_PGij-0bvs9bbvnHxlB3Vuonu7HeO2fPN9dPsjs8fb-9n0zk3QpQdJ6hIU0EgS1vlkOcGF7m0AGVB1mnQIBEqQxVCDUYai0LgpKz1gii3JMSYXQy92-Bfexc7tfZ92KSVKv1VTqrUhMlFg8sEH2NwtdqGdH7YKwT1jUoNqFRCpX5QqV0KiSEUk3mzdOGv-p_UF5RBa44</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Hiramatsu, Naoya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7341-8390</orcidid></search><sort><creationdate>20220101</creationdate><title>Geometry of varieties for graded maximal Cohen–Macaulay modules</title><author>Hiramatsu, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2082a252076d84044c1b47d00652dea0a07108c2810f0c7cd133196fab224d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Isomorphism</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiramatsu, Naoya</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiramatsu, Naoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of varieties for graded maximal Cohen–Macaulay modules</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>167</volume><issue>1-2</issue><spage>377</spage><epage>384</epage><pages>377-384</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of graded countable representation type.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-021-01282-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7341-8390</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2022-01, Vol.167 (1-2), p.377-384
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2616980651
source SpringerLink Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Geometry
Isomorphism
Lie Groups
Mathematics
Mathematics and Statistics
Modules
Number Theory
Topological Groups
title Geometry of varieties for graded maximal Cohen–Macaulay modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20varieties%20for%20graded%20maximal%20Cohen%E2%80%93Macaulay%20modules&rft.jtitle=Manuscripta%20mathematica&rft.au=Hiramatsu,%20Naoya&rft.date=2022-01-01&rft.volume=167&rft.issue=1-2&rft.spage=377&rft.epage=384&rft.pages=377-384&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-021-01282-x&rft_dat=%3Cproquest_cross%3E2616980651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616980651&rft_id=info:pmid/&rfr_iscdi=true