Geometry of varieties for graded maximal Cohen–Macaulay modules
We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of g...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2022-01, Vol.167 (1-2), p.377-384 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 1-2 |
container_start_page | 377 |
container_title | Manuscripta mathematica |
container_volume | 167 |
creator | Hiramatsu, Naoya |
description | We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of graded countable representation type. |
doi_str_mv | 10.1007/s00229-021-01282-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616980651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616980651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2082a252076d84044c1b47d00652dea0a07108c2810f0c7cd133196fab224d233</originalsourceid><addsrcrecordid>eNp9kL1OwzAQxy0EEqXwAkyRmA135yROx6riSypigdlybae0SupiJ6jdeAfekCfBECQ2phv-H3f3Y-wc4RIB5FUEIJpwIOSAVBHfHbAR5oI4yqo4ZKOkF5xKxGN2EuMaIIlSjNj01vnWdWGf-Tp702HlupWLWe1DtgzaOpu1erdqdZPN_IvbfL5_PGij-0bvs9bbvnHxlB3Vuonu7HeO2fPN9dPsjs8fb-9n0zk3QpQdJ6hIU0EgS1vlkOcGF7m0AGVB1mnQIBEqQxVCDUYai0LgpKz1gii3JMSYXQy92-Bfexc7tfZ92KSVKv1VTqrUhMlFg8sEH2NwtdqGdH7YKwT1jUoNqFRCpX5QqV0KiSEUk3mzdOGv-p_UF5RBa44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616980651</pqid></control><display><type>article</type><title>Geometry of varieties for graded maximal Cohen–Macaulay modules</title><source>SpringerLink Journals</source><creator>Hiramatsu, Naoya</creator><creatorcontrib>Hiramatsu, Naoya</creatorcontrib><description>We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of graded countable representation type.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-021-01282-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Isomorphism ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Modules ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2022-01, Vol.167 (1-2), p.377-384</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-2082a252076d84044c1b47d00652dea0a07108c2810f0c7cd133196fab224d233</cites><orcidid>0000-0002-7341-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-021-01282-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-021-01282-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hiramatsu, Naoya</creatorcontrib><title>Geometry of varieties for graded maximal Cohen–Macaulay modules</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of graded countable representation type.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Isomorphism</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQxy0EEqXwAkyRmA135yROx6riSypigdlybae0SupiJ6jdeAfekCfBECQ2phv-H3f3Y-wc4RIB5FUEIJpwIOSAVBHfHbAR5oI4yqo4ZKOkF5xKxGN2EuMaIIlSjNj01vnWdWGf-Tp702HlupWLWe1DtgzaOpu1erdqdZPN_IvbfL5_PGij-0bvs9bbvnHxlB3Vuonu7HeO2fPN9dPsjs8fb-9n0zk3QpQdJ6hIU0EgS1vlkOcGF7m0AGVB1mnQIBEqQxVCDUYai0LgpKz1gii3JMSYXQy92-Bfexc7tfZ92KSVKv1VTqrUhMlFg8sEH2NwtdqGdH7YKwT1jUoNqFRCpX5QqV0KiSEUk3mzdOGv-p_UF5RBa44</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Hiramatsu, Naoya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7341-8390</orcidid></search><sort><creationdate>20220101</creationdate><title>Geometry of varieties for graded maximal Cohen–Macaulay modules</title><author>Hiramatsu, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2082a252076d84044c1b47d00652dea0a07108c2810f0c7cd133196fab224d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Isomorphism</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiramatsu, Naoya</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiramatsu, Naoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of varieties for graded maximal Cohen–Macaulay modules</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>167</volume><issue>1-2</issue><spage>377</spage><epage>384</epage><pages>377-384</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only a finite number of isomorphism classes of graded maximal Cohen–Macaulay modules with fixed Hilbert series over Cohen–Macaulay algebras of graded countable representation type.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-021-01282-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7341-8390</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2022-01, Vol.167 (1-2), p.377-384 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2616980651 |
source | SpringerLink Journals |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Geometry Isomorphism Lie Groups Mathematics Mathematics and Statistics Modules Number Theory Topological Groups |
title | Geometry of varieties for graded maximal Cohen–Macaulay modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20varieties%20for%20graded%20maximal%20Cohen%E2%80%93Macaulay%20modules&rft.jtitle=Manuscripta%20mathematica&rft.au=Hiramatsu,%20Naoya&rft.date=2022-01-01&rft.volume=167&rft.issue=1-2&rft.spage=377&rft.epage=384&rft.pages=377-384&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-021-01282-x&rft_dat=%3Cproquest_cross%3E2616980651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616980651&rft_id=info:pmid/&rfr_iscdi=true |