Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non‐Fullerene Organic Solar Cells

Non‐fullerene acceptor (NFA) end group (EG) functionalization, especially by fluorination, affects not only the energetics but also the morphology of bulk‐heterojunction (BHJ) organic solar cell (OSC) active layers, thereby influencing the power conversion efficiency (PCE) and other metrics of NFA‐b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-01, Vol.12 (1), p.n/a
Hauptverfasser: Zhang, Xiaohua, Li, Guoping, Mukherjee, Subhrangsu, Huang, Wei, Zheng, Ding, Feng, Liang‐Wen, Chen, Yao, Wu, Jianglin, Sangwan, Vinod K., Hersam, Mark C., DeLongchamp, Dean M., Yu, Junsheng, Facchetti, Antonio, Marks, Tobin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced energy materials
container_volume 12
creator Zhang, Xiaohua
Li, Guoping
Mukherjee, Subhrangsu
Huang, Wei
Zheng, Ding
Feng, Liang‐Wen
Chen, Yao
Wu, Jianglin
Sangwan, Vinod K.
Hersam, Mark C.
DeLongchamp, Dean M.
Yu, Junsheng
Facchetti, Antonio
Marks, Tobin J.
description Non‐fullerene acceptor (NFA) end group (EG) functionalization, especially by fluorination, affects not only the energetics but also the morphology of bulk‐heterojunction (BHJ) organic solar cell (OSC) active layers, thereby influencing the power conversion efficiency (PCE) and other metrics of NFA‐based OSCs. However, a quantitative understanding of how varying the degrees of NFA fluorination influence the blend morphological and photovoltaic properties remains elusive. Here a series of three A‐DAD‐A type NFAs (D = π‐donor group and A = π‐acceptor EG) which systematically increase the degree of EG fluorination and comprehensively investigate the resulting blends with the polymer donor PM6 in terms of optical properties, electronic structure, film crystallinity, charge carrier transport, and OSC performance is reported. The results indicate that the most highly fluorinated NFA, BT‐BO‐L4F, achieves an optimal BHJ hierarchical morphology where enhanced NFA molecule intermolecular π–π stacking and optimal vertical phase gradation are achieved in the BHJ blend. These factors also promote optimum NFA‐cathode contact, more balanced electron and hole mobility, and suppress both monomolecular and bimolecular recombination. As a result, both the short‐circuit current density and fill factor in this OSC series progressively increase with increasing EG fluorine density, and the resulting PCEs increase from 9 to 16.8%. Organic solar cell active layers with A‐DAD‐A (A = acceptor; D = donor) non‐fullerene acceptors (NFAs) having different extents of end group fluorination are systematically characterized in terms of film crystallinity, donor‐acceptor depth distribution, charge carrier transport, and cell performance. The most fluorinated NFA, BT‐BO‐L4F, has optimal hierarchical morphology and vertical phase gradation, affording a power conversion efficiency of 16.81%.
doi_str_mv 10.1002/aenm.202102172
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616883969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616883969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-505a8b225e0774a673df92700e79e62360b8cd6ac1255d35dc542fd2fb57e1573</originalsourceid><addsrcrecordid>eNqFkc9OGzEQh1cVlYqAa8-WeiXBf9b27jGKEkACgpTCdeV4ZxMjx96ON0LLiUfoQ_TJ-iTdkAqOjEaaOXzfzOGXZd8ZHTNK-YWBsB1zytnQmn_Jjpli-UgVOT163wX_lp2l9ESHyktGhTjO_iz71MHWdM4a73syjaHD6L0LazKxFtouIpn7XUQXBigGsmg7t3UvkMiVAzRoN3uV3EZsN9HHdX9OHgHf7pH7jUlAltAafJPPiQk1mTWNsw6C7YkL5C6Gv6-_5zvvASEAWeDaBGfJMnqDZArep9Psa2N8grP_8yR7mM9-Tq9GN4vL6-nkZmSF1HwkqTTFinMJVOvcKC3qpuSaUtAlKC4UXRW2VsYyLmUtZG1lzpuaNyupgUktTrIfh7stxl87SF31FHcYhpcVV0wVhShVOVDjA2UxpoTQVC26rcG-YrTah1Htw6jewxiE8iA8Ow_9J3Q1md3dfrj_AMB2kXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616883969</pqid></control><display><type>article</type><title>Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non‐Fullerene Organic Solar Cells</title><source>Wiley-Blackwell Journals</source><creator>Zhang, Xiaohua ; Li, Guoping ; Mukherjee, Subhrangsu ; Huang, Wei ; Zheng, Ding ; Feng, Liang‐Wen ; Chen, Yao ; Wu, Jianglin ; Sangwan, Vinod K. ; Hersam, Mark C. ; DeLongchamp, Dean M. ; Yu, Junsheng ; Facchetti, Antonio ; Marks, Tobin J.</creator><creatorcontrib>Zhang, Xiaohua ; Li, Guoping ; Mukherjee, Subhrangsu ; Huang, Wei ; Zheng, Ding ; Feng, Liang‐Wen ; Chen, Yao ; Wu, Jianglin ; Sangwan, Vinod K. ; Hersam, Mark C. ; DeLongchamp, Dean M. ; Yu, Junsheng ; Facchetti, Antonio ; Marks, Tobin J.</creatorcontrib><description>Non‐fullerene acceptor (NFA) end group (EG) functionalization, especially by fluorination, affects not only the energetics but also the morphology of bulk‐heterojunction (BHJ) organic solar cell (OSC) active layers, thereby influencing the power conversion efficiency (PCE) and other metrics of NFA‐based OSCs. However, a quantitative understanding of how varying the degrees of NFA fluorination influence the blend morphological and photovoltaic properties remains elusive. Here a series of three A‐DAD‐A type NFAs (D = π‐donor group and A = π‐acceptor EG) which systematically increase the degree of EG fluorination and comprehensively investigate the resulting blends with the polymer donor PM6 in terms of optical properties, electronic structure, film crystallinity, charge carrier transport, and OSC performance is reported. The results indicate that the most highly fluorinated NFA, BT‐BO‐L4F, achieves an optimal BHJ hierarchical morphology where enhanced NFA molecule intermolecular π–π stacking and optimal vertical phase gradation are achieved in the BHJ blend. These factors also promote optimum NFA‐cathode contact, more balanced electron and hole mobility, and suppress both monomolecular and bimolecular recombination. As a result, both the short‐circuit current density and fill factor in this OSC series progressively increase with increasing EG fluorine density, and the resulting PCEs increase from 9 to 16.8%. Organic solar cell active layers with A‐DAD‐A (A = acceptor; D = donor) non‐fullerene acceptors (NFAs) having different extents of end group fluorination are systematically characterized in terms of film crystallinity, donor‐acceptor depth distribution, charge carrier transport, and cell performance. The most fluorinated NFA, BT‐BO‐L4F, has optimal hierarchical morphology and vertical phase gradation, affording a power conversion efficiency of 16.81%.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202102172</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bulk heterojunctions ; Carrier transport ; Circuits ; Current carriers ; Electronic structure ; Energy conversion efficiency ; Fluorination ; Fluorine ; Fullerenes ; Heterojunctions ; Hole mobility ; Morphology ; morphology control ; non‐fullerene solar cells ; Optical properties ; Optimization ; Phase separation ; Photovoltaic cells ; Polymer blends ; Solar cells ; Vertical separation</subject><ispartof>Advanced energy materials, 2022-01, Vol.12 (1), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-505a8b225e0774a673df92700e79e62360b8cd6ac1255d35dc542fd2fb57e1573</citedby><cites>FETCH-LOGICAL-c3572-505a8b225e0774a673df92700e79e62360b8cd6ac1255d35dc542fd2fb57e1573</cites><orcidid>0000-0001-8771-0141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202102172$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202102172$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Mukherjee, Subhrangsu</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Zheng, Ding</creatorcontrib><creatorcontrib>Feng, Liang‐Wen</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Wu, Jianglin</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><creatorcontrib>DeLongchamp, Dean M.</creatorcontrib><creatorcontrib>Yu, Junsheng</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><title>Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non‐Fullerene Organic Solar Cells</title><title>Advanced energy materials</title><description>Non‐fullerene acceptor (NFA) end group (EG) functionalization, especially by fluorination, affects not only the energetics but also the morphology of bulk‐heterojunction (BHJ) organic solar cell (OSC) active layers, thereby influencing the power conversion efficiency (PCE) and other metrics of NFA‐based OSCs. However, a quantitative understanding of how varying the degrees of NFA fluorination influence the blend morphological and photovoltaic properties remains elusive. Here a series of three A‐DAD‐A type NFAs (D = π‐donor group and A = π‐acceptor EG) which systematically increase the degree of EG fluorination and comprehensively investigate the resulting blends with the polymer donor PM6 in terms of optical properties, electronic structure, film crystallinity, charge carrier transport, and OSC performance is reported. The results indicate that the most highly fluorinated NFA, BT‐BO‐L4F, achieves an optimal BHJ hierarchical morphology where enhanced NFA molecule intermolecular π–π stacking and optimal vertical phase gradation are achieved in the BHJ blend. These factors also promote optimum NFA‐cathode contact, more balanced electron and hole mobility, and suppress both monomolecular and bimolecular recombination. As a result, both the short‐circuit current density and fill factor in this OSC series progressively increase with increasing EG fluorine density, and the resulting PCEs increase from 9 to 16.8%. Organic solar cell active layers with A‐DAD‐A (A = acceptor; D = donor) non‐fullerene acceptors (NFAs) having different extents of end group fluorination are systematically characterized in terms of film crystallinity, donor‐acceptor depth distribution, charge carrier transport, and cell performance. The most fluorinated NFA, BT‐BO‐L4F, has optimal hierarchical morphology and vertical phase gradation, affording a power conversion efficiency of 16.81%.</description><subject>bulk heterojunctions</subject><subject>Carrier transport</subject><subject>Circuits</subject><subject>Current carriers</subject><subject>Electronic structure</subject><subject>Energy conversion efficiency</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>Hole mobility</subject><subject>Morphology</subject><subject>morphology control</subject><subject>non‐fullerene solar cells</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Phase separation</subject><subject>Photovoltaic cells</subject><subject>Polymer blends</subject><subject>Solar cells</subject><subject>Vertical separation</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OGzEQh1cVlYqAa8-WeiXBf9b27jGKEkACgpTCdeV4ZxMjx96ON0LLiUfoQ_TJ-iTdkAqOjEaaOXzfzOGXZd8ZHTNK-YWBsB1zytnQmn_Jjpli-UgVOT163wX_lp2l9ESHyktGhTjO_iz71MHWdM4a73syjaHD6L0LazKxFtouIpn7XUQXBigGsmg7t3UvkMiVAzRoN3uV3EZsN9HHdX9OHgHf7pH7jUlAltAafJPPiQk1mTWNsw6C7YkL5C6Gv6-_5zvvASEAWeDaBGfJMnqDZArep9Psa2N8grP_8yR7mM9-Tq9GN4vL6-nkZmSF1HwkqTTFinMJVOvcKC3qpuSaUtAlKC4UXRW2VsYyLmUtZG1lzpuaNyupgUktTrIfh7stxl87SF31FHcYhpcVV0wVhShVOVDjA2UxpoTQVC26rcG-YrTah1Htw6jewxiE8iA8Ow_9J3Q1md3dfrj_AMB2kXs</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhang, Xiaohua</creator><creator>Li, Guoping</creator><creator>Mukherjee, Subhrangsu</creator><creator>Huang, Wei</creator><creator>Zheng, Ding</creator><creator>Feng, Liang‐Wen</creator><creator>Chen, Yao</creator><creator>Wu, Jianglin</creator><creator>Sangwan, Vinod K.</creator><creator>Hersam, Mark C.</creator><creator>DeLongchamp, Dean M.</creator><creator>Yu, Junsheng</creator><creator>Facchetti, Antonio</creator><creator>Marks, Tobin J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid></search><sort><creationdate>20220101</creationdate><title>Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non‐Fullerene Organic Solar Cells</title><author>Zhang, Xiaohua ; Li, Guoping ; Mukherjee, Subhrangsu ; Huang, Wei ; Zheng, Ding ; Feng, Liang‐Wen ; Chen, Yao ; Wu, Jianglin ; Sangwan, Vinod K. ; Hersam, Mark C. ; DeLongchamp, Dean M. ; Yu, Junsheng ; Facchetti, Antonio ; Marks, Tobin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-505a8b225e0774a673df92700e79e62360b8cd6ac1255d35dc542fd2fb57e1573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bulk heterojunctions</topic><topic>Carrier transport</topic><topic>Circuits</topic><topic>Current carriers</topic><topic>Electronic structure</topic><topic>Energy conversion efficiency</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>Hole mobility</topic><topic>Morphology</topic><topic>morphology control</topic><topic>non‐fullerene solar cells</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Phase separation</topic><topic>Photovoltaic cells</topic><topic>Polymer blends</topic><topic>Solar cells</topic><topic>Vertical separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Li, Guoping</creatorcontrib><creatorcontrib>Mukherjee, Subhrangsu</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Zheng, Ding</creatorcontrib><creatorcontrib>Feng, Liang‐Wen</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Wu, Jianglin</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><creatorcontrib>DeLongchamp, Dean M.</creatorcontrib><creatorcontrib>Yu, Junsheng</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaohua</au><au>Li, Guoping</au><au>Mukherjee, Subhrangsu</au><au>Huang, Wei</au><au>Zheng, Ding</au><au>Feng, Liang‐Wen</au><au>Chen, Yao</au><au>Wu, Jianglin</au><au>Sangwan, Vinod K.</au><au>Hersam, Mark C.</au><au>DeLongchamp, Dean M.</au><au>Yu, Junsheng</au><au>Facchetti, Antonio</au><au>Marks, Tobin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non‐Fullerene Organic Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Non‐fullerene acceptor (NFA) end group (EG) functionalization, especially by fluorination, affects not only the energetics but also the morphology of bulk‐heterojunction (BHJ) organic solar cell (OSC) active layers, thereby influencing the power conversion efficiency (PCE) and other metrics of NFA‐based OSCs. However, a quantitative understanding of how varying the degrees of NFA fluorination influence the blend morphological and photovoltaic properties remains elusive. Here a series of three A‐DAD‐A type NFAs (D = π‐donor group and A = π‐acceptor EG) which systematically increase the degree of EG fluorination and comprehensively investigate the resulting blends with the polymer donor PM6 in terms of optical properties, electronic structure, film crystallinity, charge carrier transport, and OSC performance is reported. The results indicate that the most highly fluorinated NFA, BT‐BO‐L4F, achieves an optimal BHJ hierarchical morphology where enhanced NFA molecule intermolecular π–π stacking and optimal vertical phase gradation are achieved in the BHJ blend. These factors also promote optimum NFA‐cathode contact, more balanced electron and hole mobility, and suppress both monomolecular and bimolecular recombination. As a result, both the short‐circuit current density and fill factor in this OSC series progressively increase with increasing EG fluorine density, and the resulting PCEs increase from 9 to 16.8%. Organic solar cell active layers with A‐DAD‐A (A = acceptor; D = donor) non‐fullerene acceptors (NFAs) having different extents of end group fluorination are systematically characterized in terms of film crystallinity, donor‐acceptor depth distribution, charge carrier transport, and cell performance. The most fluorinated NFA, BT‐BO‐L4F, has optimal hierarchical morphology and vertical phase gradation, affording a power conversion efficiency of 16.81%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202102172</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-01, Vol.12 (1), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2616883969
source Wiley-Blackwell Journals
subjects bulk heterojunctions
Carrier transport
Circuits
Current carriers
Electronic structure
Energy conversion efficiency
Fluorination
Fluorine
Fullerenes
Heterojunctions
Hole mobility
Morphology
morphology control
non‐fullerene solar cells
Optical properties
Optimization
Phase separation
Photovoltaic cells
Polymer blends
Solar cells
Vertical separation
title Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non‐Fullerene Organic Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematically%20Controlling%20Acceptor%20Fluorination%20Optimizes%20Hierarchical%20Morphology,%20Vertical%20Phase%20Separation,%20and%20Efficiency%20in%20Non%E2%80%90Fullerene%20Organic%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhang,%20Xiaohua&rft.date=2022-01-01&rft.volume=12&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202102172&rft_dat=%3Cproquest_cross%3E2616883969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616883969&rft_id=info:pmid/&rfr_iscdi=true