Counting the numbers of paths of all lengths in dendrimers and its applications
For positive integers \(n\) and \(k\), the dendrimer \(T_{n, k}\) is defined as the rooted tree of radius \(n\) whose all vertices at distance less than \(n\) from the root have degree \(k\). The dendrimers are higly branched organic macromolecules having repeated iterations of branched units that s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hafsah Tabassum Syed Ahtsham Ul Haq Bokhary Jiarasuksakun, Thiradet Kaemawichanurat, Pawaton |
description | For positive integers \(n\) and \(k\), the dendrimer \(T_{n, k}\) is defined as the rooted tree of radius \(n\) whose all vertices at distance less than \(n\) from the root have degree \(k\). The dendrimers are higly branched organic macromolecules having repeated iterations of branched units that surroundes the central core. Dendrimers are used in a variety of fields including chemistry, nanotechnology, biology. In this paper, for any positive integer \(\ell\), we count the number of paths of length \(\ell\) of \(T_{n, k}\). As a consequence of our main results, we obtain the average distance of \(T_{n, k}\) which we can establish an alternate proof for the Wiener index of \(T_{n, k}\). Further, we generalize the concept of medium domination, introduced by Varg\"{o}r and D\"{u}ndar in 2011, of \(T_{n, k}\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2616790173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616790173</sourcerecordid><originalsourceid>FETCH-proquest_journals_26167901733</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMgWLT_cMF1IU360HVR3LlxX6JN25T0Jubx_7biB7iac5jZkIRxnmengrEdSb2fKKWsqllZ8oTcGxMxKBwgjBIwzk_pPJgerAjjdwitQUsc1qsQOomdU_NaCexAhYXWavUSQRn0B7LthfYy_XFPjtfLo7ll1pl3lD60k4kOF9WyKq_qM81rzv-rPh_xPrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616790173</pqid></control><display><type>article</type><title>Counting the numbers of paths of all lengths in dendrimers and its applications</title><source>Free E- Journals</source><creator>Hafsah Tabassum ; Syed Ahtsham Ul Haq Bokhary ; Jiarasuksakun, Thiradet ; Kaemawichanurat, Pawaton</creator><creatorcontrib>Hafsah Tabassum ; Syed Ahtsham Ul Haq Bokhary ; Jiarasuksakun, Thiradet ; Kaemawichanurat, Pawaton</creatorcontrib><description>For positive integers \(n\) and \(k\), the dendrimer \(T_{n, k}\) is defined as the rooted tree of radius \(n\) whose all vertices at distance less than \(n\) from the root have degree \(k\). The dendrimers are higly branched organic macromolecules having repeated iterations of branched units that surroundes the central core. Dendrimers are used in a variety of fields including chemistry, nanotechnology, biology. In this paper, for any positive integer \(\ell\), we count the number of paths of length \(\ell\) of \(T_{n, k}\). As a consequence of our main results, we obtain the average distance of \(T_{n, k}\) which we can establish an alternate proof for the Wiener index of \(T_{n, k}\). Further, we generalize the concept of medium domination, introduced by Varg\"{o}r and D\"{u}ndar in 2011, of \(T_{n, k}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Dendrimers ; Macromolecules</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hafsah Tabassum</creatorcontrib><creatorcontrib>Syed Ahtsham Ul Haq Bokhary</creatorcontrib><creatorcontrib>Jiarasuksakun, Thiradet</creatorcontrib><creatorcontrib>Kaemawichanurat, Pawaton</creatorcontrib><title>Counting the numbers of paths of all lengths in dendrimers and its applications</title><title>arXiv.org</title><description>For positive integers \(n\) and \(k\), the dendrimer \(T_{n, k}\) is defined as the rooted tree of radius \(n\) whose all vertices at distance less than \(n\) from the root have degree \(k\). The dendrimers are higly branched organic macromolecules having repeated iterations of branched units that surroundes the central core. Dendrimers are used in a variety of fields including chemistry, nanotechnology, biology. In this paper, for any positive integer \(\ell\), we count the number of paths of length \(\ell\) of \(T_{n, k}\). As a consequence of our main results, we obtain the average distance of \(T_{n, k}\) which we can establish an alternate proof for the Wiener index of \(T_{n, k}\). Further, we generalize the concept of medium domination, introduced by Varg\"{o}r and D\"{u}ndar in 2011, of \(T_{n, k}\).</description><subject>Apexes</subject><subject>Dendrimers</subject><subject>Macromolecules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAUBYMgWLT_cMF1IU360HVR3LlxX6JN25T0Jubx_7biB7iac5jZkIRxnmengrEdSb2fKKWsqllZ8oTcGxMxKBwgjBIwzk_pPJgerAjjdwitQUsc1qsQOomdU_NaCexAhYXWavUSQRn0B7LthfYy_XFPjtfLo7ll1pl3lD60k4kOF9WyKq_qM81rzv-rPh_xPrI</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>Hafsah Tabassum</creator><creator>Syed Ahtsham Ul Haq Bokhary</creator><creator>Jiarasuksakun, Thiradet</creator><creator>Kaemawichanurat, Pawaton</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220104</creationdate><title>Counting the numbers of paths of all lengths in dendrimers and its applications</title><author>Hafsah Tabassum ; Syed Ahtsham Ul Haq Bokhary ; Jiarasuksakun, Thiradet ; Kaemawichanurat, Pawaton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26167901733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Dendrimers</topic><topic>Macromolecules</topic><toplevel>online_resources</toplevel><creatorcontrib>Hafsah Tabassum</creatorcontrib><creatorcontrib>Syed Ahtsham Ul Haq Bokhary</creatorcontrib><creatorcontrib>Jiarasuksakun, Thiradet</creatorcontrib><creatorcontrib>Kaemawichanurat, Pawaton</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hafsah Tabassum</au><au>Syed Ahtsham Ul Haq Bokhary</au><au>Jiarasuksakun, Thiradet</au><au>Kaemawichanurat, Pawaton</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Counting the numbers of paths of all lengths in dendrimers and its applications</atitle><jtitle>arXiv.org</jtitle><date>2022-01-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>For positive integers \(n\) and \(k\), the dendrimer \(T_{n, k}\) is defined as the rooted tree of radius \(n\) whose all vertices at distance less than \(n\) from the root have degree \(k\). The dendrimers are higly branched organic macromolecules having repeated iterations of branched units that surroundes the central core. Dendrimers are used in a variety of fields including chemistry, nanotechnology, biology. In this paper, for any positive integer \(\ell\), we count the number of paths of length \(\ell\) of \(T_{n, k}\). As a consequence of our main results, we obtain the average distance of \(T_{n, k}\) which we can establish an alternate proof for the Wiener index of \(T_{n, k}\). Further, we generalize the concept of medium domination, introduced by Varg\"{o}r and D\"{u}ndar in 2011, of \(T_{n, k}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2616790173 |
source | Free E- Journals |
subjects | Apexes Dendrimers Macromolecules |
title | Counting the numbers of paths of all lengths in dendrimers and its applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Counting%20the%20numbers%20of%20paths%20of%20all%20lengths%20in%20dendrimers%20and%20its%20applications&rft.jtitle=arXiv.org&rft.au=Hafsah%20Tabassum&rft.date=2022-01-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2616790173%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616790173&rft_id=info:pmid/&rfr_iscdi=true |