In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors
Zn-ion hybrid capacitors, with a large-capacity Zn anode (battery-type) integrated with a capacitive cathode, hold great potential to relieve the unsatisfactory energy-to-power ratio of aqueous supercapacitors. The research into cathode design is expected to bridge the capacity gap between the two e...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-01, Vol.10 (2), p.611-621 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | 2 |
container_start_page | 611 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Zheng, Xunwen Miao, Ling Song, Ziyang Du, Wenyan Zhu, Dazhang Lv, Yaokang Li, Liangchun Gan, Lihua Liu, Mingxian |
description | Zn-ion hybrid capacitors, with a large-capacity Zn anode (battery-type) integrated with a capacitive cathode, hold great potential to relieve the unsatisfactory energy-to-power ratio of aqueous supercapacitors. The research into cathode design is expected to bridge the capacity gap between the two electrodes without sacrificing the inherent power/cycling superiorities but is still in its infancy. In this work, robust O/N-decorated porous carbon cathodes were derived by the
in situ
calcination of conjugated polyamides, wherein the solvent-guided strategy was applied to shape the carbon nanoarchitecture for the activation of Zn storage sites. After optimizing the solvent–precursor interactions, the packed particle architecture (C
DMF
) ultimately exposed ample electrosorption platform up to 1656 m
2
g
−1
, and O/N dopants (15.77 wt%) promoted interfacial Zn adsorption by lowering the energy barrier for C–O–Zn bonding. Further experimental evaluations revealed that the CO species on the robust C
DMF
framework tended to boost reversible chemical adsorption to form C–O–Zn bondings while maintaining durable charge transfer, which minimized capacity loss even at high rates. As a result, the aqueous C
DMF
//Zn capacitor achieved a large capacity of 180 mA h g
−1
, an ultrahigh energy density of 106.7 W h kg
−1
and an excellent power output of 13.4 kW kg
−1
, as well as 91.1% capacity retention over 300 000 cycles. This design strategy gives an appealing insight into the subtle fabrication of high-performance carbon cathodes and highlights their applicability towards practical Zn-based energy storage in the future. |
doi_str_mv | 10.1039/D1TA07350H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616757249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616757249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-8aca3bd95df5c7ae830a365e8c56bbe8400f21aa9d5e40b551051a01a0079ac33</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWLQX_4KAN2F1stnsx7HUjxYKXurFyzKbze6mtsmaZC09-L-7WtHhwRuYH_PgEXLF4JYBL-7u2XoGGRewOCGTGAREWVKkp397np-TqfcbGCcHSItiQj6XhnodBmrQWHSy00HJMDhtWmobKq3ZDC0GVdPebg-407WiRoW9dW9RrZz-GC8SXWXNaKGztfI02D26mna67agyyrWHqLd75eirifQP2KPUwTp_Sc4a3Ho1_fUL8vL4sJ4votXz03I-W0WSA4QoR4m8qgtRN0JmqHIOyFOhcinSqlJ5AtDEDLGohUqgEoKBYAijICtQcn5Bro9_e2ffB-VDubGDM2NkGacszUQWJ8VI3Rwp6az3TjVl7_QO3aFkUH43XP43zL8AC29wQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616757249</pqid></control><display><type>article</type><title>In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zheng, Xunwen ; Miao, Ling ; Song, Ziyang ; Du, Wenyan ; Zhu, Dazhang ; Lv, Yaokang ; Li, Liangchun ; Gan, Lihua ; Liu, Mingxian</creator><creatorcontrib>Zheng, Xunwen ; Miao, Ling ; Song, Ziyang ; Du, Wenyan ; Zhu, Dazhang ; Lv, Yaokang ; Li, Liangchun ; Gan, Lihua ; Liu, Mingxian</creatorcontrib><description>Zn-ion hybrid capacitors, with a large-capacity Zn anode (battery-type) integrated with a capacitive cathode, hold great potential to relieve the unsatisfactory energy-to-power ratio of aqueous supercapacitors. The research into cathode design is expected to bridge the capacity gap between the two electrodes without sacrificing the inherent power/cycling superiorities but is still in its infancy. In this work, robust O/N-decorated porous carbon cathodes were derived by the
in situ
calcination of conjugated polyamides, wherein the solvent-guided strategy was applied to shape the carbon nanoarchitecture for the activation of Zn storage sites. After optimizing the solvent–precursor interactions, the packed particle architecture (C
DMF
) ultimately exposed ample electrosorption platform up to 1656 m
2
g
−1
, and O/N dopants (15.77 wt%) promoted interfacial Zn adsorption by lowering the energy barrier for C–O–Zn bonding. Further experimental evaluations revealed that the CO species on the robust C
DMF
framework tended to boost reversible chemical adsorption to form C–O–Zn bondings while maintaining durable charge transfer, which minimized capacity loss even at high rates. As a result, the aqueous C
DMF
//Zn capacitor achieved a large capacity of 180 mA h g
−1
, an ultrahigh energy density of 106.7 W h kg
−1
and an excellent power output of 13.4 kW kg
−1
, as well as 91.1% capacity retention over 300 000 cycles. This design strategy gives an appealing insight into the subtle fabrication of high-performance carbon cathodes and highlights their applicability towards practical Zn-based energy storage in the future.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D1TA07350H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Capacitors ; Carbon ; Cathodes ; Charge transfer ; Energy storage ; Fabrication ; Flux density ; Polyamide resins ; Polyamides ; Robustness ; Solvents ; Zinc</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-01, Vol.10 (2), p.611-621</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-8aca3bd95df5c7ae830a365e8c56bbe8400f21aa9d5e40b551051a01a0079ac33</citedby><cites>FETCH-LOGICAL-c300t-8aca3bd95df5c7ae830a365e8c56bbe8400f21aa9d5e40b551051a01a0079ac33</cites><orcidid>0000-0002-0077-9048 ; 0000-0002-3652-8822 ; 0000-0002-9517-2985 ; 0000-0002-2514-9528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zheng, Xunwen</creatorcontrib><creatorcontrib>Miao, Ling</creatorcontrib><creatorcontrib>Song, Ziyang</creatorcontrib><creatorcontrib>Du, Wenyan</creatorcontrib><creatorcontrib>Zhu, Dazhang</creatorcontrib><creatorcontrib>Lv, Yaokang</creatorcontrib><creatorcontrib>Li, Liangchun</creatorcontrib><creatorcontrib>Gan, Lihua</creatorcontrib><creatorcontrib>Liu, Mingxian</creatorcontrib><title>In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Zn-ion hybrid capacitors, with a large-capacity Zn anode (battery-type) integrated with a capacitive cathode, hold great potential to relieve the unsatisfactory energy-to-power ratio of aqueous supercapacitors. The research into cathode design is expected to bridge the capacity gap between the two electrodes without sacrificing the inherent power/cycling superiorities but is still in its infancy. In this work, robust O/N-decorated porous carbon cathodes were derived by the
in situ
calcination of conjugated polyamides, wherein the solvent-guided strategy was applied to shape the carbon nanoarchitecture for the activation of Zn storage sites. After optimizing the solvent–precursor interactions, the packed particle architecture (C
DMF
) ultimately exposed ample electrosorption platform up to 1656 m
2
g
−1
, and O/N dopants (15.77 wt%) promoted interfacial Zn adsorption by lowering the energy barrier for C–O–Zn bonding. Further experimental evaluations revealed that the CO species on the robust C
DMF
framework tended to boost reversible chemical adsorption to form C–O–Zn bondings while maintaining durable charge transfer, which minimized capacity loss even at high rates. As a result, the aqueous C
DMF
//Zn capacitor achieved a large capacity of 180 mA h g
−1
, an ultrahigh energy density of 106.7 W h kg
−1
and an excellent power output of 13.4 kW kg
−1
, as well as 91.1% capacity retention over 300 000 cycles. This design strategy gives an appealing insight into the subtle fabrication of high-performance carbon cathodes and highlights their applicability towards practical Zn-based energy storage in the future.</description><subject>Adsorption</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Energy storage</subject><subject>Fabrication</subject><subject>Flux density</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Robustness</subject><subject>Solvents</subject><subject>Zinc</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWLQX_4KAN2F1stnsx7HUjxYKXurFyzKbze6mtsmaZC09-L-7WtHhwRuYH_PgEXLF4JYBL-7u2XoGGRewOCGTGAREWVKkp397np-TqfcbGCcHSItiQj6XhnodBmrQWHSy00HJMDhtWmobKq3ZDC0GVdPebg-407WiRoW9dW9RrZz-GC8SXWXNaKGztfI02D26mna67agyyrWHqLd75eirifQP2KPUwTp_Sc4a3Ho1_fUL8vL4sJ4votXz03I-W0WSA4QoR4m8qgtRN0JmqHIOyFOhcinSqlJ5AtDEDLGohUqgEoKBYAijICtQcn5Bro9_e2ffB-VDubGDM2NkGacszUQWJ8VI3Rwp6az3TjVl7_QO3aFkUH43XP43zL8AC29wQg</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>Zheng, Xunwen</creator><creator>Miao, Ling</creator><creator>Song, Ziyang</creator><creator>Du, Wenyan</creator><creator>Zhu, Dazhang</creator><creator>Lv, Yaokang</creator><creator>Li, Liangchun</creator><creator>Gan, Lihua</creator><creator>Liu, Mingxian</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0077-9048</orcidid><orcidid>https://orcid.org/0000-0002-3652-8822</orcidid><orcidid>https://orcid.org/0000-0002-9517-2985</orcidid><orcidid>https://orcid.org/0000-0002-2514-9528</orcidid></search><sort><creationdate>20220104</creationdate><title>In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors</title><author>Zheng, Xunwen ; Miao, Ling ; Song, Ziyang ; Du, Wenyan ; Zhu, Dazhang ; Lv, Yaokang ; Li, Liangchun ; Gan, Lihua ; Liu, Mingxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-8aca3bd95df5c7ae830a365e8c56bbe8400f21aa9d5e40b551051a01a0079ac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Energy storage</topic><topic>Fabrication</topic><topic>Flux density</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Robustness</topic><topic>Solvents</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xunwen</creatorcontrib><creatorcontrib>Miao, Ling</creatorcontrib><creatorcontrib>Song, Ziyang</creatorcontrib><creatorcontrib>Du, Wenyan</creatorcontrib><creatorcontrib>Zhu, Dazhang</creatorcontrib><creatorcontrib>Lv, Yaokang</creatorcontrib><creatorcontrib>Li, Liangchun</creatorcontrib><creatorcontrib>Gan, Lihua</creatorcontrib><creatorcontrib>Liu, Mingxian</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xunwen</au><au>Miao, Ling</au><au>Song, Ziyang</au><au>Du, Wenyan</au><au>Zhu, Dazhang</au><au>Lv, Yaokang</au><au>Li, Liangchun</au><au>Gan, Lihua</au><au>Liu, Mingxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-01-04</date><risdate>2022</risdate><volume>10</volume><issue>2</issue><spage>611</spage><epage>621</epage><pages>611-621</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Zn-ion hybrid capacitors, with a large-capacity Zn anode (battery-type) integrated with a capacitive cathode, hold great potential to relieve the unsatisfactory energy-to-power ratio of aqueous supercapacitors. The research into cathode design is expected to bridge the capacity gap between the two electrodes without sacrificing the inherent power/cycling superiorities but is still in its infancy. In this work, robust O/N-decorated porous carbon cathodes were derived by the
in situ
calcination of conjugated polyamides, wherein the solvent-guided strategy was applied to shape the carbon nanoarchitecture for the activation of Zn storage sites. After optimizing the solvent–precursor interactions, the packed particle architecture (C
DMF
) ultimately exposed ample electrosorption platform up to 1656 m
2
g
−1
, and O/N dopants (15.77 wt%) promoted interfacial Zn adsorption by lowering the energy barrier for C–O–Zn bonding. Further experimental evaluations revealed that the CO species on the robust C
DMF
framework tended to boost reversible chemical adsorption to form C–O–Zn bondings while maintaining durable charge transfer, which minimized capacity loss even at high rates. As a result, the aqueous C
DMF
//Zn capacitor achieved a large capacity of 180 mA h g
−1
, an ultrahigh energy density of 106.7 W h kg
−1
and an excellent power output of 13.4 kW kg
−1
, as well as 91.1% capacity retention over 300 000 cycles. This design strategy gives an appealing insight into the subtle fabrication of high-performance carbon cathodes and highlights their applicability towards practical Zn-based energy storage in the future.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D1TA07350H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0077-9048</orcidid><orcidid>https://orcid.org/0000-0002-3652-8822</orcidid><orcidid>https://orcid.org/0000-0002-9517-2985</orcidid><orcidid>https://orcid.org/0000-0002-2514-9528</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-01, Vol.10 (2), p.611-621 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2616757249 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Adsorption Capacitors Carbon Cathodes Charge transfer Energy storage Fabrication Flux density Polyamide resins Polyamides Robustness Solvents Zinc |
title | In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20nanoarchitecturing%20of%20conjugated%20polyamide%20network-derived%20carbon%20cathodes%20toward%20high%20energy-power%20Zn-ion%20capacitors&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zheng,%20Xunwen&rft.date=2022-01-04&rft.volume=10&rft.issue=2&rft.spage=611&rft.epage=621&rft.pages=611-621&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D1TA07350H&rft_dat=%3Cproquest_cross%3E2616757249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616757249&rft_id=info:pmid/&rfr_iscdi=true |