SODAR: Exploring Locally Aggregated Learning of Mask Representations for Instance Segmentation

Recent state-of-the-art one-stage instance segmentation model SOLO divides the input image into a grid and directly predicts per grid cell object masks with fully-convolutional networks, yielding comparably good performance as traditional two-stage Mask R-CNN yet enjoying much simpler architecture a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2022, Vol.31, p.839-851
Hauptverfasser: Wang, Tao, Liew, Jun Hao, Li, Yu, Chen, Yunpeng, Feng, Jiashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue
container_start_page 839
container_title IEEE transactions on image processing
container_volume 31
creator Wang, Tao
Liew, Jun Hao
Li, Yu
Chen, Yunpeng
Feng, Jiashi
description Recent state-of-the-art one-stage instance segmentation model SOLO divides the input image into a grid and directly predicts per grid cell object masks with fully-convolutional networks, yielding comparably good performance as traditional two-stage Mask R-CNN yet enjoying much simpler architecture and higher efficiency. We observe SOLO generates similar masks for an object at nearby grid cells, and these neighboring predictions can complement each other as some may better segment certain object part, most of which are however directly discarded by non-maximum-suppression. Motivated by the observed gap, we develop a novel learning-based aggregation method that improves upon SOLO by leveraging the rich neighboring information while maintaining the architectural efficiency. The resulting model is named SODAR. Unlike the original per grid cell object masks, SODAR is implicitly supervised to learn mask representations that encode geometric structure of nearby objects and complement adjacent representations with context. The aggregation method further includes two novel designs: 1) a mask interpolation mechanism that enables the model to generate much fewer mask representations by sharing neighboring representations among nearby grid cells, and thus saves computation and memory; 2) a deformable neighbour sampling mechanism that allows the model to adaptively adjust neighbor sampling locations thus gathering mask representations with more relevant context and achieving higher performance. SODAR significantly improves the instance segmentation performance, e.g. , it outperforms a SOLO model with ResNet-101 backbone by 2.2 AP on COCO test set, with only about 3% additional computation. We further show consistent performance gain with the SOLOv2 model.
doi_str_mv 10.1109/TIP.2021.3135717
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2616725106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9659811</ieee_id><sourcerecordid>2616725106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-674520dd8a3adfdab52f68cadef130db7b24db069745e64eaa7f1ec99842a63b3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4soOKfvgi8BnztzaZo0vo05dTCZbPPVkDbX0tm1NenA_fd2bPp0B7_vdwdfENwCHQFQ9bCevY8YZTCKIIolyLNgAIpDSCln5_1OYxlK4OoyuPJ-QynwGMQg-FwtnsbLRzL9aavGlXVB5k1mqmpPxkXhsDAdWjJH4-pD1uTkzfgvssTWoce6M13Z1J7kjSOz2nemzpCssNj-RdfBRW4qjzenOQw-nqfryWs4X7zMJuN5mDHOu1BIHjNqbWIiY3Nr0pjlIsmMxRwialOZMm5TKlTPoeBojMwBM6USzoyI0mgY3B_vtq753qHv9KbZubp_qZkAIVkMVPQUPVKZa7x3mOvWlVvj9hqoPljUvUV9sKhPFvvK3bFSIuI_rkSsEoDoFzjgbo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616725106</pqid></control><display><type>article</type><title>SODAR: Exploring Locally Aggregated Learning of Mask Representations for Instance Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Tao ; Liew, Jun Hao ; Li, Yu ; Chen, Yunpeng ; Feng, Jiashi</creator><creatorcontrib>Wang, Tao ; Liew, Jun Hao ; Li, Yu ; Chen, Yunpeng ; Feng, Jiashi</creatorcontrib><description>Recent state-of-the-art one-stage instance segmentation model SOLO divides the input image into a grid and directly predicts per grid cell object masks with fully-convolutional networks, yielding comparably good performance as traditional two-stage Mask R-CNN yet enjoying much simpler architecture and higher efficiency. We observe SOLO generates similar masks for an object at nearby grid cells, and these neighboring predictions can complement each other as some may better segment certain object part, most of which are however directly discarded by non-maximum-suppression. Motivated by the observed gap, we develop a novel learning-based aggregation method that improves upon SOLO by leveraging the rich neighboring information while maintaining the architectural efficiency. The resulting model is named SODAR. Unlike the original per grid cell object masks, SODAR is implicitly supervised to learn mask representations that encode geometric structure of nearby objects and complement adjacent representations with context. The aggregation method further includes two novel designs: 1) a mask interpolation mechanism that enables the model to generate much fewer mask representations by sharing neighboring representations among nearby grid cells, and thus saves computation and memory; 2) a deformable neighbour sampling mechanism that allows the model to adaptively adjust neighbor sampling locations thus gathering mask representations with more relevant context and achieving higher performance. SODAR significantly improves the instance segmentation performance, e.g. , it outperforms a SOLO model with ResNet-101 backbone by 2.2 AP on COCO test set, with only about 3% additional computation. We further show consistent performance gain with the SOLOv2 model.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3135717</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Architecture ; Computation ; Computational modeling ; Computer architecture ; Context ; Convolution ; feature aggregation ; Formability ; Image segmentation ; Instance segmentation ; Interpolation ; Learning ; mask representation ; Masks ; Microprocessors ; object detection ; one-stage ; Predictive models ; Representations ; Sampling ; Shape ; Sodar</subject><ispartof>IEEE transactions on image processing, 2022, Vol.31, p.839-851</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-674520dd8a3adfdab52f68cadef130db7b24db069745e64eaa7f1ec99842a63b3</cites><orcidid>0000-0002-7538-6759 ; 0000-0002-2480-878X ; 0000-0001-6843-0064 ; 0000-0003-1331-5020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9659811$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9659811$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liew, Jun Hao</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Chen, Yunpeng</creatorcontrib><creatorcontrib>Feng, Jiashi</creatorcontrib><title>SODAR: Exploring Locally Aggregated Learning of Mask Representations for Instance Segmentation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Recent state-of-the-art one-stage instance segmentation model SOLO divides the input image into a grid and directly predicts per grid cell object masks with fully-convolutional networks, yielding comparably good performance as traditional two-stage Mask R-CNN yet enjoying much simpler architecture and higher efficiency. We observe SOLO generates similar masks for an object at nearby grid cells, and these neighboring predictions can complement each other as some may better segment certain object part, most of which are however directly discarded by non-maximum-suppression. Motivated by the observed gap, we develop a novel learning-based aggregation method that improves upon SOLO by leveraging the rich neighboring information while maintaining the architectural efficiency. The resulting model is named SODAR. Unlike the original per grid cell object masks, SODAR is implicitly supervised to learn mask representations that encode geometric structure of nearby objects and complement adjacent representations with context. The aggregation method further includes two novel designs: 1) a mask interpolation mechanism that enables the model to generate much fewer mask representations by sharing neighboring representations among nearby grid cells, and thus saves computation and memory; 2) a deformable neighbour sampling mechanism that allows the model to adaptively adjust neighbor sampling locations thus gathering mask representations with more relevant context and achieving higher performance. SODAR significantly improves the instance segmentation performance, e.g. , it outperforms a SOLO model with ResNet-101 backbone by 2.2 AP on COCO test set, with only about 3% additional computation. We further show consistent performance gain with the SOLOv2 model.</description><subject>Agglomeration</subject><subject>Architecture</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Context</subject><subject>Convolution</subject><subject>feature aggregation</subject><subject>Formability</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>Interpolation</subject><subject>Learning</subject><subject>mask representation</subject><subject>Masks</subject><subject>Microprocessors</subject><subject>object detection</subject><subject>one-stage</subject><subject>Predictive models</subject><subject>Representations</subject><subject>Sampling</subject><subject>Shape</subject><subject>Sodar</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4soOKfvgi8BnztzaZo0vo05dTCZbPPVkDbX0tm1NenA_fd2bPp0B7_vdwdfENwCHQFQ9bCevY8YZTCKIIolyLNgAIpDSCln5_1OYxlK4OoyuPJ-QynwGMQg-FwtnsbLRzL9aavGlXVB5k1mqmpPxkXhsDAdWjJH4-pD1uTkzfgvssTWoce6M13Z1J7kjSOz2nemzpCssNj-RdfBRW4qjzenOQw-nqfryWs4X7zMJuN5mDHOu1BIHjNqbWIiY3Nr0pjlIsmMxRwialOZMm5TKlTPoeBojMwBM6USzoyI0mgY3B_vtq753qHv9KbZubp_qZkAIVkMVPQUPVKZa7x3mOvWlVvj9hqoPljUvUV9sKhPFvvK3bFSIuI_rkSsEoDoFzjgbo8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Tao</creator><creator>Liew, Jun Hao</creator><creator>Li, Yu</creator><creator>Chen, Yunpeng</creator><creator>Feng, Jiashi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7538-6759</orcidid><orcidid>https://orcid.org/0000-0002-2480-878X</orcidid><orcidid>https://orcid.org/0000-0001-6843-0064</orcidid><orcidid>https://orcid.org/0000-0003-1331-5020</orcidid></search><sort><creationdate>2022</creationdate><title>SODAR: Exploring Locally Aggregated Learning of Mask Representations for Instance Segmentation</title><author>Wang, Tao ; Liew, Jun Hao ; Li, Yu ; Chen, Yunpeng ; Feng, Jiashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-674520dd8a3adfdab52f68cadef130db7b24db069745e64eaa7f1ec99842a63b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Architecture</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Context</topic><topic>Convolution</topic><topic>feature aggregation</topic><topic>Formability</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>Interpolation</topic><topic>Learning</topic><topic>mask representation</topic><topic>Masks</topic><topic>Microprocessors</topic><topic>object detection</topic><topic>one-stage</topic><topic>Predictive models</topic><topic>Representations</topic><topic>Sampling</topic><topic>Shape</topic><topic>Sodar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liew, Jun Hao</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Chen, Yunpeng</creatorcontrib><creatorcontrib>Feng, Jiashi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Tao</au><au>Liew, Jun Hao</au><au>Li, Yu</au><au>Chen, Yunpeng</au><au>Feng, Jiashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SODAR: Exploring Locally Aggregated Learning of Mask Representations for Instance Segmentation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2022</date><risdate>2022</risdate><volume>31</volume><spage>839</spage><epage>851</epage><pages>839-851</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Recent state-of-the-art one-stage instance segmentation model SOLO divides the input image into a grid and directly predicts per grid cell object masks with fully-convolutional networks, yielding comparably good performance as traditional two-stage Mask R-CNN yet enjoying much simpler architecture and higher efficiency. We observe SOLO generates similar masks for an object at nearby grid cells, and these neighboring predictions can complement each other as some may better segment certain object part, most of which are however directly discarded by non-maximum-suppression. Motivated by the observed gap, we develop a novel learning-based aggregation method that improves upon SOLO by leveraging the rich neighboring information while maintaining the architectural efficiency. The resulting model is named SODAR. Unlike the original per grid cell object masks, SODAR is implicitly supervised to learn mask representations that encode geometric structure of nearby objects and complement adjacent representations with context. The aggregation method further includes two novel designs: 1) a mask interpolation mechanism that enables the model to generate much fewer mask representations by sharing neighboring representations among nearby grid cells, and thus saves computation and memory; 2) a deformable neighbour sampling mechanism that allows the model to adaptively adjust neighbor sampling locations thus gathering mask representations with more relevant context and achieving higher performance. SODAR significantly improves the instance segmentation performance, e.g. , it outperforms a SOLO model with ResNet-101 backbone by 2.2 AP on COCO test set, with only about 3% additional computation. We further show consistent performance gain with the SOLOv2 model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2021.3135717</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7538-6759</orcidid><orcidid>https://orcid.org/0000-0002-2480-878X</orcidid><orcidid>https://orcid.org/0000-0001-6843-0064</orcidid><orcidid>https://orcid.org/0000-0003-1331-5020</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022, Vol.31, p.839-851
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2616725106
source IEEE Electronic Library (IEL)
subjects Agglomeration
Architecture
Computation
Computational modeling
Computer architecture
Context
Convolution
feature aggregation
Formability
Image segmentation
Instance segmentation
Interpolation
Learning
mask representation
Masks
Microprocessors
object detection
one-stage
Predictive models
Representations
Sampling
Shape
Sodar
title SODAR: Exploring Locally Aggregated Learning of Mask Representations for Instance Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SODAR:%20Exploring%20Locally%20Aggregated%20Learning%20of%20Mask%20Representations%20for%20Instance%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Tao&rft.date=2022&rft.volume=31&rft.spage=839&rft.epage=851&rft.pages=839-851&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3135717&rft_dat=%3Cproquest_RIE%3E2616725106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616725106&rft_id=info:pmid/&rft_ieee_id=9659811&rfr_iscdi=true