Spatially, Spectrally Single-Mode and Mechanically Flexible 3D-Printed Terahertz Transmission Waveguides

Emerged terahertz transmission waveguides or fibers will enable novel terahertz systems and applications. High-quality output beam profiles, mechanical flexibility and reliability are among the most crucial and challenging characteristics of terahertz transmission waveguides. Here, we design and fab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2022-02, Vol.14 (1), p.1-7
Hauptverfasser: Chen, Bo, Wei, Wei, Shao, Jingzhu, Xu, Borui, Zhu, Huan, Xu, Gangyi, Wu, Chongzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 1
container_title IEEE photonics journal
container_volume 14
creator Chen, Bo
Wei, Wei
Shao, Jingzhu
Xu, Borui
Zhu, Huan
Xu, Gangyi
Wu, Chongzhao
description Emerged terahertz transmission waveguides or fibers will enable novel terahertz systems and applications. High-quality output beam profiles, mechanical flexibility and reliability are among the most crucial and challenging characteristics of terahertz transmission waveguides. Here, we design and fabricate the flexible and stretchable transmission waveguides by 3D printing to guide radiation from terahertz (THz) quantum cascade lasers (QCLs) lasing at the frequency of 2.58 THz. Composite silver nanoparticles and polydimethylsiloxane are coated on the inner surface of the 3D-printed polycarbonate/rubber substrate tube. Output beam profiles from the transmission waveguides, which are captured by a room-temperature terahertz camera, demonstrate single-mode spatial intensity distribution. Transmission spectra are measured out from the waveguides and single-mode characteristics of THz QCLs are preserved from threshold to peak bias. More than 300 times of bending and force-strain curves are tested for the 3D-printed flexible terahertz transmission waveguides, the propagation losses exhibit no obvious change, demonstrating a superior mechanical endurance.
doi_str_mv 10.1109/JPHOT.2021.3135659
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2616718309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9652026</ieee_id><doaj_id>oai_doaj_org_article_4f38e688ea2b461596ebf33710ce657d</doaj_id><sourcerecordid>2616718309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a6b3b97be39b5709eb759d69589c3251a26a23b98bd310f2819d438e02b465fb3</originalsourceid><addsrcrecordid>eNpNkV9PwjAUxRejiYh-AX1Z4qvD_lm79dGgCAYCCRgfm3a9g5KxYTuM-OndwBCfetKe37k3PUFwi1EPYyQe32bD6aJHEME9iinjTJwFHSxiGiHO2Pk_fRlceb9GiAvMRCdYzbeqtqoo9g_hfAtZ7Vodzm25LCCaVAZCVZpwAtlKlTY7PA4K-La6gJA-RzNnyxpMuACnVuDqn3DhVOk31ntbleGH-oLlzhrw18FFrgoPN39nN3gfvCz6w2g8fR31n8ZRFiNWR4prqkWigQrNEiRAJ0wYLlgqMkoYVoQr0jhSbShGOUmxMDFNAREdc5Zr2g1Gx1xTqbXcOrtRbi8rZeXhonJLqVxtswJknDcgT1NQLdx8BwedU5pglAFniWmy7o9ZW1d97sDXcl3tXNmsLwnHPMEpRaJxkaMrc5X3DvLTVIxk2448tCPbduRfOw10d4QsAJwAwVnj4vQXzbKLJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616718309</pqid></control><display><type>article</type><title>Spatially, Spectrally Single-Mode and Mechanically Flexible 3D-Printed Terahertz Transmission Waveguides</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Bo ; Wei, Wei ; Shao, Jingzhu ; Xu, Borui ; Zhu, Huan ; Xu, Gangyi ; Wu, Chongzhao</creator><creatorcontrib>Chen, Bo ; Wei, Wei ; Shao, Jingzhu ; Xu, Borui ; Zhu, Huan ; Xu, Gangyi ; Wu, Chongzhao</creatorcontrib><description>Emerged terahertz transmission waveguides or fibers will enable novel terahertz systems and applications. High-quality output beam profiles, mechanical flexibility and reliability are among the most crucial and challenging characteristics of terahertz transmission waveguides. Here, we design and fabricate the flexible and stretchable transmission waveguides by 3D printing to guide radiation from terahertz (THz) quantum cascade lasers (QCLs) lasing at the frequency of 2.58 THz. Composite silver nanoparticles and polydimethylsiloxane are coated on the inner surface of the 3D-printed polycarbonate/rubber substrate tube. Output beam profiles from the transmission waveguides, which are captured by a room-temperature terahertz camera, demonstrate single-mode spatial intensity distribution. Transmission spectra are measured out from the waveguides and single-mode characteristics of THz QCLs are preserved from threshold to peak bias. More than 300 times of bending and force-strain curves are tested for the 3D-printed flexible terahertz transmission waveguides, the propagation losses exhibit no obvious change, demonstrating a superior mechanical endurance.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2021.3135659</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D-printing ; Bending ; Coatings ; Electron tubes ; Nanoparticles ; Optical waveguides ; Polydimethylsiloxane ; Propagation losses ; Quantum cascade lasers ; Room temperature ; Silver ; Substrates ; Terahertz frequencies ; terahertz quantum cascade lasers ; Terahertz waveguide ; Three dimensional printing ; Wave propagation ; Waveguides</subject><ispartof>IEEE photonics journal, 2022-02, Vol.14 (1), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a6b3b97be39b5709eb759d69589c3251a26a23b98bd310f2819d438e02b465fb3</citedby><cites>FETCH-LOGICAL-c405t-a6b3b97be39b5709eb759d69589c3251a26a23b98bd310f2819d438e02b465fb3</cites><orcidid>0000-0001-7000-0231 ; 0000-0002-5515-3325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9652026$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Shao, Jingzhu</creatorcontrib><creatorcontrib>Xu, Borui</creatorcontrib><creatorcontrib>Zhu, Huan</creatorcontrib><creatorcontrib>Xu, Gangyi</creatorcontrib><creatorcontrib>Wu, Chongzhao</creatorcontrib><title>Spatially, Spectrally Single-Mode and Mechanically Flexible 3D-Printed Terahertz Transmission Waveguides</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Emerged terahertz transmission waveguides or fibers will enable novel terahertz systems and applications. High-quality output beam profiles, mechanical flexibility and reliability are among the most crucial and challenging characteristics of terahertz transmission waveguides. Here, we design and fabricate the flexible and stretchable transmission waveguides by 3D printing to guide radiation from terahertz (THz) quantum cascade lasers (QCLs) lasing at the frequency of 2.58 THz. Composite silver nanoparticles and polydimethylsiloxane are coated on the inner surface of the 3D-printed polycarbonate/rubber substrate tube. Output beam profiles from the transmission waveguides, which are captured by a room-temperature terahertz camera, demonstrate single-mode spatial intensity distribution. Transmission spectra are measured out from the waveguides and single-mode characteristics of THz QCLs are preserved from threshold to peak bias. More than 300 times of bending and force-strain curves are tested for the 3D-printed flexible terahertz transmission waveguides, the propagation losses exhibit no obvious change, demonstrating a superior mechanical endurance.</description><subject>3D-printing</subject><subject>Bending</subject><subject>Coatings</subject><subject>Electron tubes</subject><subject>Nanoparticles</subject><subject>Optical waveguides</subject><subject>Polydimethylsiloxane</subject><subject>Propagation losses</subject><subject>Quantum cascade lasers</subject><subject>Room temperature</subject><subject>Silver</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>terahertz quantum cascade lasers</subject><subject>Terahertz waveguide</subject><subject>Three dimensional printing</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9PwjAUxRejiYh-AX1Z4qvD_lm79dGgCAYCCRgfm3a9g5KxYTuM-OndwBCfetKe37k3PUFwi1EPYyQe32bD6aJHEME9iinjTJwFHSxiGiHO2Pk_fRlceb9GiAvMRCdYzbeqtqoo9g_hfAtZ7Vodzm25LCCaVAZCVZpwAtlKlTY7PA4K-La6gJA-RzNnyxpMuACnVuDqn3DhVOk31ntbleGH-oLlzhrw18FFrgoPN39nN3gfvCz6w2g8fR31n8ZRFiNWR4prqkWigQrNEiRAJ0wYLlgqMkoYVoQr0jhSbShGOUmxMDFNAREdc5Zr2g1Gx1xTqbXcOrtRbi8rZeXhonJLqVxtswJknDcgT1NQLdx8BwedU5pglAFniWmy7o9ZW1d97sDXcl3tXNmsLwnHPMEpRaJxkaMrc5X3DvLTVIxk2448tCPbduRfOw10d4QsAJwAwVnj4vQXzbKLJQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Bo</creator><creator>Wei, Wei</creator><creator>Shao, Jingzhu</creator><creator>Xu, Borui</creator><creator>Zhu, Huan</creator><creator>Xu, Gangyi</creator><creator>Wu, Chongzhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7000-0231</orcidid><orcidid>https://orcid.org/0000-0002-5515-3325</orcidid></search><sort><creationdate>20220201</creationdate><title>Spatially, Spectrally Single-Mode and Mechanically Flexible 3D-Printed Terahertz Transmission Waveguides</title><author>Chen, Bo ; Wei, Wei ; Shao, Jingzhu ; Xu, Borui ; Zhu, Huan ; Xu, Gangyi ; Wu, Chongzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a6b3b97be39b5709eb759d69589c3251a26a23b98bd310f2819d438e02b465fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D-printing</topic><topic>Bending</topic><topic>Coatings</topic><topic>Electron tubes</topic><topic>Nanoparticles</topic><topic>Optical waveguides</topic><topic>Polydimethylsiloxane</topic><topic>Propagation losses</topic><topic>Quantum cascade lasers</topic><topic>Room temperature</topic><topic>Silver</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>terahertz quantum cascade lasers</topic><topic>Terahertz waveguide</topic><topic>Three dimensional printing</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Shao, Jingzhu</creatorcontrib><creatorcontrib>Xu, Borui</creatorcontrib><creatorcontrib>Zhu, Huan</creatorcontrib><creatorcontrib>Xu, Gangyi</creatorcontrib><creatorcontrib>Wu, Chongzhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Bo</au><au>Wei, Wei</au><au>Shao, Jingzhu</au><au>Xu, Borui</au><au>Zhu, Huan</au><au>Xu, Gangyi</au><au>Wu, Chongzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially, Spectrally Single-Mode and Mechanically Flexible 3D-Printed Terahertz Transmission Waveguides</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Emerged terahertz transmission waveguides or fibers will enable novel terahertz systems and applications. High-quality output beam profiles, mechanical flexibility and reliability are among the most crucial and challenging characteristics of terahertz transmission waveguides. Here, we design and fabricate the flexible and stretchable transmission waveguides by 3D printing to guide radiation from terahertz (THz) quantum cascade lasers (QCLs) lasing at the frequency of 2.58 THz. Composite silver nanoparticles and polydimethylsiloxane are coated on the inner surface of the 3D-printed polycarbonate/rubber substrate tube. Output beam profiles from the transmission waveguides, which are captured by a room-temperature terahertz camera, demonstrate single-mode spatial intensity distribution. Transmission spectra are measured out from the waveguides and single-mode characteristics of THz QCLs are preserved from threshold to peak bias. More than 300 times of bending and force-strain curves are tested for the 3D-printed flexible terahertz transmission waveguides, the propagation losses exhibit no obvious change, demonstrating a superior mechanical endurance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2021.3135659</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7000-0231</orcidid><orcidid>https://orcid.org/0000-0002-5515-3325</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2022-02, Vol.14 (1), p.1-7
issn 1943-0655
1943-0655
1943-0647
language eng
recordid cdi_proquest_journals_2616718309
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 3D-printing
Bending
Coatings
Electron tubes
Nanoparticles
Optical waveguides
Polydimethylsiloxane
Propagation losses
Quantum cascade lasers
Room temperature
Silver
Substrates
Terahertz frequencies
terahertz quantum cascade lasers
Terahertz waveguide
Three dimensional printing
Wave propagation
Waveguides
title Spatially, Spectrally Single-Mode and Mechanically Flexible 3D-Printed Terahertz Transmission Waveguides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially,%20Spectrally%20Single-Mode%20and%20Mechanically%20Flexible%203D-Printed%20Terahertz%20Transmission%20Waveguides&rft.jtitle=IEEE%20photonics%20journal&rft.au=Chen,%20Bo&rft.date=2022-02-01&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2021.3135659&rft_dat=%3Cproquest_doaj_%3E2616718309%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616718309&rft_id=info:pmid/&rft_ieee_id=9652026&rft_doaj_id=oai_doaj_org_article_4f38e688ea2b461596ebf33710ce657d&rfr_iscdi=true