Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces

In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety V of P N ( C ) with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2022-02, Vol.32 (2), Article 52
1. Verfasser: Si, Duc Quang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Journal of Geometric Analysis
container_volume 32
creator Si, Duc Quang
description In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety V of P N ( C ) with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces.
doi_str_mv 10.1007/s12220-021-00765-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2616649174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339122</galeid><sourcerecordid>A707339122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-7e76a0bd80aab7fc954f94af336098f4beab374a23827742674b9fc0be277cfd3</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhYnRxFr9A55IPK-ywMLusWmsNWmjBzWeJCwdWpp2WWFb038vdU28mTkwb_I-YB5C1zm5zQmRdzGnlJKM0DxLUhQZO0GDvCiqJOn7aepJQTJRUXGOLmJcE8IF43KAPuYQ_NaHduUMnuu2dc0yYtd0Hj8HvwbTuT3gNx0cdA4i_nLdCo9C7bqgwwFP9NZtjnNv8dzvE4ynhxZC3AWrDcRLdGb1JsLV7zlEr5P7l_E0mz09PI5Hs8ywouwyCVJoUi9KonUtrakKbiuuLWOCVKXlNeiaSa4pK6mUnArJ68oaUkOSxi7YEN3097bBf-4gdmrtd6FJTyoqciF4lUueXLe9a6k3oFxjfdrCpFrA1hnfgHVpPpJEMlalRBNAe8AEH2MAq9rgtmlxlRN1DF71wasUvPoJXrEEsR6KydwsIfz95R_qG7yShvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616649174</pqid></control><display><type>article</type><title>Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Si, Duc Quang</creator><creatorcontrib>Si, Duc Quang</creatorcontrib><description>In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety V of P N ( C ) with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-021-00765-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Hyperspaces ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>The Journal of Geometric Analysis, 2022-02, Vol.32 (2), Article 52</ispartof><rights>Mathematica Josephina, Inc. 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Mathematica Josephina, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-7e76a0bd80aab7fc954f94af336098f4beab374a23827742674b9fc0be277cfd3</citedby><cites>FETCH-LOGICAL-c358t-7e76a0bd80aab7fc954f94af336098f4beab374a23827742674b9fc0be277cfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-021-00765-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-021-00765-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Si, Duc Quang</creatorcontrib><title>Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety V of P N ( C ) with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Hyperspaces</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAyEQhYnRxFr9A55IPK-ywMLusWmsNWmjBzWeJCwdWpp2WWFb038vdU28mTkwb_I-YB5C1zm5zQmRdzGnlJKM0DxLUhQZO0GDvCiqJOn7aepJQTJRUXGOLmJcE8IF43KAPuYQ_NaHduUMnuu2dc0yYtd0Hj8HvwbTuT3gNx0cdA4i_nLdCo9C7bqgwwFP9NZtjnNv8dzvE4ynhxZC3AWrDcRLdGb1JsLV7zlEr5P7l_E0mz09PI5Hs8ywouwyCVJoUi9KonUtrakKbiuuLWOCVKXlNeiaSa4pK6mUnArJ68oaUkOSxi7YEN3097bBf-4gdmrtd6FJTyoqciF4lUueXLe9a6k3oFxjfdrCpFrA1hnfgHVpPpJEMlalRBNAe8AEH2MAq9rgtmlxlRN1DF71wasUvPoJXrEEsR6KydwsIfz95R_qG7yShvo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Si, Duc Quang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20220201</creationdate><title>Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces</title><author>Si, Duc Quang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-7e76a0bd80aab7fc954f94af336098f4beab374a23827742674b9fc0be277cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Hyperspaces</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Duc Quang</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Duc Quang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><artnum>52</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety V of P N ( C ) with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-021-00765-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2022-02, Vol.32 (2), Article 52
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2616649174
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Hyperspaces
Mathematics
Mathematics and Statistics
Theorems
title Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meromorphic%20Mappings%20into%20Projective%20Varieties%20with%20Arbitrary%20Families%20of%20Moving%20Hypersurfaces&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Si,%20Duc%20Quang&rft.date=2022-02-01&rft.volume=32&rft.issue=2&rft.artnum=52&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-021-00765-3&rft_dat=%3Cgale_proqu%3EA707339122%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616649174&rft_id=info:pmid/&rft_galeid=A707339122&rfr_iscdi=true