Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces
In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety V of P N ( C ) with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular fo...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022-02, Vol.32 (2), Article 52 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Journal of Geometric Analysis |
container_volume | 32 |
creator | Si, Duc Quang |
description | In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety
V
of
P
N
(
C
)
with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces. |
doi_str_mv | 10.1007/s12220-021-00765-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2616649174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339122</galeid><sourcerecordid>A707339122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-7e76a0bd80aab7fc954f94af336098f4beab374a23827742674b9fc0be277cfd3</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhYnRxFr9A55IPK-ywMLusWmsNWmjBzWeJCwdWpp2WWFb038vdU28mTkwb_I-YB5C1zm5zQmRdzGnlJKM0DxLUhQZO0GDvCiqJOn7aepJQTJRUXGOLmJcE8IF43KAPuYQ_NaHduUMnuu2dc0yYtd0Hj8HvwbTuT3gNx0cdA4i_nLdCo9C7bqgwwFP9NZtjnNv8dzvE4ynhxZC3AWrDcRLdGb1JsLV7zlEr5P7l_E0mz09PI5Hs8ywouwyCVJoUi9KonUtrakKbiuuLWOCVKXlNeiaSa4pK6mUnArJ68oaUkOSxi7YEN3097bBf-4gdmrtd6FJTyoqciF4lUueXLe9a6k3oFxjfdrCpFrA1hnfgHVpPpJEMlalRBNAe8AEH2MAq9rgtmlxlRN1DF71wasUvPoJXrEEsR6KydwsIfz95R_qG7yShvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616649174</pqid></control><display><type>article</type><title>Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Si, Duc Quang</creator><creatorcontrib>Si, Duc Quang</creatorcontrib><description>In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety
V
of
P
N
(
C
)
with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-021-00765-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Hyperspaces ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>The Journal of Geometric Analysis, 2022-02, Vol.32 (2), Article 52</ispartof><rights>Mathematica Josephina, Inc. 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Mathematica Josephina, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-7e76a0bd80aab7fc954f94af336098f4beab374a23827742674b9fc0be277cfd3</citedby><cites>FETCH-LOGICAL-c358t-7e76a0bd80aab7fc954f94af336098f4beab374a23827742674b9fc0be277cfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-021-00765-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-021-00765-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Si, Duc Quang</creatorcontrib><title>Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety
V
of
P
N
(
C
)
with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Hyperspaces</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAyEQhYnRxFr9A55IPK-ywMLusWmsNWmjBzWeJCwdWpp2WWFb038vdU28mTkwb_I-YB5C1zm5zQmRdzGnlJKM0DxLUhQZO0GDvCiqJOn7aepJQTJRUXGOLmJcE8IF43KAPuYQ_NaHduUMnuu2dc0yYtd0Hj8HvwbTuT3gNx0cdA4i_nLdCo9C7bqgwwFP9NZtjnNv8dzvE4ynhxZC3AWrDcRLdGb1JsLV7zlEr5P7l_E0mz09PI5Hs8ywouwyCVJoUi9KonUtrakKbiuuLWOCVKXlNeiaSa4pK6mUnArJ68oaUkOSxi7YEN3097bBf-4gdmrtd6FJTyoqciF4lUueXLe9a6k3oFxjfdrCpFrA1hnfgHVpPpJEMlalRBNAe8AEH2MAq9rgtmlxlRN1DF71wasUvPoJXrEEsR6KydwsIfz95R_qG7yShvo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Si, Duc Quang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20220201</creationdate><title>Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces</title><author>Si, Duc Quang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-7e76a0bd80aab7fc954f94af336098f4beab374a23827742674b9fc0be277cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Hyperspaces</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Duc Quang</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Duc Quang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><artnum>52</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we prove a general second main theorem for meromorphic mappings into a subvariety
V
of
P
N
(
C
)
with an arbitrary family of moving hypersurfaces. Our second main theorem generalizes and improves all previous results for meromorphic mappings with moving hypersurfaces, in particular for meromorphic mappings and families of moving hypersurfaces in subgeneral position. The method of our proof is different from that of previous authors used for the case of moving hypersurfaces.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-021-00765-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2022-02, Vol.32 (2), Article 52 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2616649174 |
source | Springer Nature - Complete Springer Journals |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Hyperspaces Mathematics Mathematics and Statistics Theorems |
title | Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meromorphic%20Mappings%20into%20Projective%20Varieties%20with%20Arbitrary%20Families%20of%20Moving%20Hypersurfaces&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Si,%20Duc%20Quang&rft.date=2022-02-01&rft.volume=32&rft.issue=2&rft.artnum=52&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-021-00765-3&rft_dat=%3Cgale_proqu%3EA707339122%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616649174&rft_id=info:pmid/&rft_galeid=A707339122&rfr_iscdi=true |