Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs

•Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2021-12, Vol.103, p.105966, Article 105966
Hauptverfasser: Aledo, Juan A., Barzanouni, Ali, Malekbala, Ghazaleh, Sharifan, Leila, Valverde, Jose C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105966
container_title Communications in nonlinear science & numerical simulation
container_volume 103
creator Aledo, Juan A.
Barzanouni, Ali
Malekbala, Ghazaleh
Sharifan, Leila
Valverde, Jose C.
description •Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also studied.•Illustrative numerical examples to support the validity of the results are provided. In this work, we solve the fixed-point existence, coexistence and uniqueness problems in the context of homogeneous parallel and sequential dynamical systems on maxterm and minterm Boolean functions over directed dependency graphs. More specifically, we give characterizations for the existence of fixed points. Likewise, we provide a sufficient condition and a necessary one for the non-coexistence of other periods in the dynamics of the system. In addition, we state a necessary and sufficient condition for the uniqueness of a fixed point, what allows us to establish a Fixed-Point Theorem in the sense of Banach for this kind of systems. Finally, we give an advance in the analysis of the number of fixed points of such systems, finding a lower bound for this number in the case of the most simplest maxterm and minterm. Numerical examples are given to show the feasibility of the results. Thus, this work completes the study of the fixed-point problems for homogeneous Boolean finite dynamical systems on maxterm and minterm functions.
doi_str_mv 10.1016/j.cnsns.2021.105966
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616538008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570421002781</els_id><sourcerecordid>2616538008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a9292f60503ee725c778e52827062e0e1fff6e69abb74af6184d56fd89e8d4d83</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxSMEEqXwCVgssZJiO4ntDAyoKn-kSiwwW659BlepE-y0tN8ep4GV6e6s93vne1l2TfCMYMLu1jPto48ziilJL1XN2Ek2IYKLnFNenqYeY55XHJfn2UWMa5youion2fdi72IPXsMt0i38DUh5g7befW3BQ4yotci6PRjUtc73ETmPOhVU00BzlEYYlL1TDTIHrzZOpy4ektkmwTsIyLgAuk8OH0F1n_EyO7OqiXD1W6fZ--Pibf6cL1-fXuYPy1wXnPW5qmlNLcMVLgA4rTTnAioqKMeMAgZirWXAarVa8VJZRkRpKmaNqEGY0ohimt2Mvl1o0xdjL9ftNvi0UlJGWFUIjAdVMap0aGMMYGUX3EaFgyRYDgnLtTwmLIeE5Zhwou5HCtIBOwdBRu2G9MZbpWndv_wPIxWHwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616538008</pqid></control><display><type>article</type><title>Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Aledo, Juan A. ; Barzanouni, Ali ; Malekbala, Ghazaleh ; Sharifan, Leila ; Valverde, Jose C.</creator><creatorcontrib>Aledo, Juan A. ; Barzanouni, Ali ; Malekbala, Ghazaleh ; Sharifan, Leila ; Valverde, Jose C.</creatorcontrib><description>•Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also studied.•Illustrative numerical examples to support the validity of the results are provided. In this work, we solve the fixed-point existence, coexistence and uniqueness problems in the context of homogeneous parallel and sequential dynamical systems on maxterm and minterm Boolean functions over directed dependency graphs. More specifically, we give characterizations for the existence of fixed points. Likewise, we provide a sufficient condition and a necessary one for the non-coexistence of other periods in the dynamics of the system. In addition, we state a necessary and sufficient condition for the uniqueness of a fixed point, what allows us to establish a Fixed-Point Theorem in the sense of Banach for this kind of systems. Finally, we give an advance in the analysis of the number of fixed points of such systems, finding a lower bound for this number in the case of the most simplest maxterm and minterm. Numerical examples are given to show the feasibility of the results. Thus, this work completes the study of the fixed-point problems for homogeneous Boolean finite dynamical systems on maxterm and minterm functions.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2021.105966</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Banach spaces ; Boolean algebra ; Boolean functions ; Dominating sets ; Dynamical systems ; Fixed point theorems ; Fixed points (mathematics) ; Graph theory ; Graphs ; Lower bounds ; Mathematical functions ; Network models ; Nonlinear equations ; Types of periodic orbits ; Uniqueness</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2021-12, Vol.103, p.105966, Article 105966</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Dec 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a9292f60503ee725c778e52827062e0e1fff6e69abb74af6184d56fd89e8d4d83</citedby><cites>FETCH-LOGICAL-c376t-a9292f60503ee725c778e52827062e0e1fff6e69abb74af6184d56fd89e8d4d83</cites><orcidid>0000-0002-3214-9606 ; 0000-0003-1786-8087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2021.105966$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Aledo, Juan A.</creatorcontrib><creatorcontrib>Barzanouni, Ali</creatorcontrib><creatorcontrib>Malekbala, Ghazaleh</creatorcontrib><creatorcontrib>Sharifan, Leila</creatorcontrib><creatorcontrib>Valverde, Jose C.</creatorcontrib><title>Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also studied.•Illustrative numerical examples to support the validity of the results are provided. In this work, we solve the fixed-point existence, coexistence and uniqueness problems in the context of homogeneous parallel and sequential dynamical systems on maxterm and minterm Boolean functions over directed dependency graphs. More specifically, we give characterizations for the existence of fixed points. Likewise, we provide a sufficient condition and a necessary one for the non-coexistence of other periods in the dynamics of the system. In addition, we state a necessary and sufficient condition for the uniqueness of a fixed point, what allows us to establish a Fixed-Point Theorem in the sense of Banach for this kind of systems. Finally, we give an advance in the analysis of the number of fixed points of such systems, finding a lower bound for this number in the case of the most simplest maxterm and minterm. Numerical examples are given to show the feasibility of the results. Thus, this work completes the study of the fixed-point problems for homogeneous Boolean finite dynamical systems on maxterm and minterm functions.</description><subject>Banach spaces</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Dominating sets</subject><subject>Dynamical systems</subject><subject>Fixed point theorems</subject><subject>Fixed points (mathematics)</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Lower bounds</subject><subject>Mathematical functions</subject><subject>Network models</subject><subject>Nonlinear equations</subject><subject>Types of periodic orbits</subject><subject>Uniqueness</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxSMEEqXwCVgssZJiO4ntDAyoKn-kSiwwW659BlepE-y0tN8ep4GV6e6s93vne1l2TfCMYMLu1jPto48ziilJL1XN2Ek2IYKLnFNenqYeY55XHJfn2UWMa5youion2fdi72IPXsMt0i38DUh5g7befW3BQ4yotci6PRjUtc73ETmPOhVU00BzlEYYlL1TDTIHrzZOpy4ektkmwTsIyLgAuk8OH0F1n_EyO7OqiXD1W6fZ--Pibf6cL1-fXuYPy1wXnPW5qmlNLcMVLgA4rTTnAioqKMeMAgZirWXAarVa8VJZRkRpKmaNqEGY0ohimt2Mvl1o0xdjL9ftNvi0UlJGWFUIjAdVMap0aGMMYGUX3EaFgyRYDgnLtTwmLIeE5Zhwou5HCtIBOwdBRu2G9MZbpWndv_wPIxWHwA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Aledo, Juan A.</creator><creator>Barzanouni, Ali</creator><creator>Malekbala, Ghazaleh</creator><creator>Sharifan, Leila</creator><creator>Valverde, Jose C.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3214-9606</orcidid><orcidid>https://orcid.org/0000-0003-1786-8087</orcidid></search><sort><creationdate>202112</creationdate><title>Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs</title><author>Aledo, Juan A. ; Barzanouni, Ali ; Malekbala, Ghazaleh ; Sharifan, Leila ; Valverde, Jose C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a9292f60503ee725c778e52827062e0e1fff6e69abb74af6184d56fd89e8d4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach spaces</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Dominating sets</topic><topic>Dynamical systems</topic><topic>Fixed point theorems</topic><topic>Fixed points (mathematics)</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Lower bounds</topic><topic>Mathematical functions</topic><topic>Network models</topic><topic>Nonlinear equations</topic><topic>Types of periodic orbits</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aledo, Juan A.</creatorcontrib><creatorcontrib>Barzanouni, Ali</creatorcontrib><creatorcontrib>Malekbala, Ghazaleh</creatorcontrib><creatorcontrib>Sharifan, Leila</creatorcontrib><creatorcontrib>Valverde, Jose C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aledo, Juan A.</au><au>Barzanouni, Ali</au><au>Malekbala, Ghazaleh</au><au>Sharifan, Leila</au><au>Valverde, Jose C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2021-12</date><risdate>2021</risdate><volume>103</volume><spage>105966</spage><pages>105966-</pages><artnum>105966</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also studied.•Illustrative numerical examples to support the validity of the results are provided. In this work, we solve the fixed-point existence, coexistence and uniqueness problems in the context of homogeneous parallel and sequential dynamical systems on maxterm and minterm Boolean functions over directed dependency graphs. More specifically, we give characterizations for the existence of fixed points. Likewise, we provide a sufficient condition and a necessary one for the non-coexistence of other periods in the dynamics of the system. In addition, we state a necessary and sufficient condition for the uniqueness of a fixed point, what allows us to establish a Fixed-Point Theorem in the sense of Banach for this kind of systems. Finally, we give an advance in the analysis of the number of fixed points of such systems, finding a lower bound for this number in the case of the most simplest maxterm and minterm. Numerical examples are given to show the feasibility of the results. Thus, this work completes the study of the fixed-point problems for homogeneous Boolean finite dynamical systems on maxterm and minterm functions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2021.105966</doi><orcidid>https://orcid.org/0000-0002-3214-9606</orcidid><orcidid>https://orcid.org/0000-0003-1786-8087</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2021-12, Vol.103, p.105966, Article 105966
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2616538008
source Elsevier ScienceDirect Journals Complete
subjects Banach spaces
Boolean algebra
Boolean functions
Dominating sets
Dynamical systems
Fixed point theorems
Fixed points (mathematics)
Graph theory
Graphs
Lower bounds
Mathematical functions
Network models
Nonlinear equations
Types of periodic orbits
Uniqueness
title Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence,%20coexistence%20and%20uniqueness%20of%20fixed%20points%20in%20parallel%20and%20sequential%20dynamical%20systems%20over%20directed%20graphs&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Aledo,%20Juan%20A.&rft.date=2021-12&rft.volume=103&rft.spage=105966&rft.pages=105966-&rft.artnum=105966&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2021.105966&rft_dat=%3Cproquest_cross%3E2616538008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616538008&rft_id=info:pmid/&rft_els_id=S1007570421002781&rfr_iscdi=true