Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs
•Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2021-12, Vol.103, p.105966, Article 105966 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105966 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 103 |
creator | Aledo, Juan A. Barzanouni, Ali Malekbala, Ghazaleh Sharifan, Leila Valverde, Jose C. |
description | •Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also studied.•Illustrative numerical examples to support the validity of the results are provided.
In this work, we solve the fixed-point existence, coexistence and uniqueness problems in the context of homogeneous parallel and sequential dynamical systems on maxterm and minterm Boolean functions over directed dependency graphs. More specifically, we give characterizations for the existence of fixed points. Likewise, we provide a sufficient condition and a necessary one for the non-coexistence of other periods in the dynamics of the system. In addition, we state a necessary and sufficient condition for the uniqueness of a fixed point, what allows us to establish a Fixed-Point Theorem in the sense of Banach for this kind of systems. Finally, we give an advance in the analysis of the number of fixed points of such systems, finding a lower bound for this number in the case of the most simplest maxterm and minterm. Numerical examples are given to show the feasibility of the results. Thus, this work completes the study of the fixed-point problems for homogeneous Boolean finite dynamical systems on maxterm and minterm functions. |
doi_str_mv | 10.1016/j.cnsns.2021.105966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616538008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570421002781</els_id><sourcerecordid>2616538008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a9292f60503ee725c778e52827062e0e1fff6e69abb74af6184d56fd89e8d4d83</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxSMEEqXwCVgssZJiO4ntDAyoKn-kSiwwW659BlepE-y0tN8ep4GV6e6s93vne1l2TfCMYMLu1jPto48ziilJL1XN2Ek2IYKLnFNenqYeY55XHJfn2UWMa5youion2fdi72IPXsMt0i38DUh5g7befW3BQ4yotci6PRjUtc73ETmPOhVU00BzlEYYlL1TDTIHrzZOpy4ektkmwTsIyLgAuk8OH0F1n_EyO7OqiXD1W6fZ--Pibf6cL1-fXuYPy1wXnPW5qmlNLcMVLgA4rTTnAioqKMeMAgZirWXAarVa8VJZRkRpKmaNqEGY0ohimt2Mvl1o0xdjL9ftNvi0UlJGWFUIjAdVMap0aGMMYGUX3EaFgyRYDgnLtTwmLIeE5Zhwou5HCtIBOwdBRu2G9MZbpWndv_wPIxWHwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616538008</pqid></control><display><type>article</type><title>Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Aledo, Juan A. ; Barzanouni, Ali ; Malekbala, Ghazaleh ; Sharifan, Leila ; Valverde, Jose C.</creator><creatorcontrib>Aledo, Juan A. ; Barzanouni, Ali ; Malekbala, Ghazaleh ; Sharifan, Leila ; Valverde, Jose C.</creatorcontrib><description>•Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also studied.•Illustrative numerical examples to support the validity of the results are provided.
In this work, we solve the fixed-point existence, coexistence and uniqueness problems in the context of homogeneous parallel and sequential dynamical systems on maxterm and minterm Boolean functions over directed dependency graphs. More specifically, we give characterizations for the existence of fixed points. Likewise, we provide a sufficient condition and a necessary one for the non-coexistence of other periods in the dynamics of the system. In addition, we state a necessary and sufficient condition for the uniqueness of a fixed point, what allows us to establish a Fixed-Point Theorem in the sense of Banach for this kind of systems. Finally, we give an advance in the analysis of the number of fixed points of such systems, finding a lower bound for this number in the case of the most simplest maxterm and minterm. Numerical examples are given to show the feasibility of the results. Thus, this work completes the study of the fixed-point problems for homogeneous Boolean finite dynamical systems on maxterm and minterm functions.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2021.105966</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Banach spaces ; Boolean algebra ; Boolean functions ; Dominating sets ; Dynamical systems ; Fixed point theorems ; Fixed points (mathematics) ; Graph theory ; Graphs ; Lower bounds ; Mathematical functions ; Network models ; Nonlinear equations ; Types of periodic orbits ; Uniqueness</subject><ispartof>Communications in nonlinear science & numerical simulation, 2021-12, Vol.103, p.105966, Article 105966</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Dec 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a9292f60503ee725c778e52827062e0e1fff6e69abb74af6184d56fd89e8d4d83</citedby><cites>FETCH-LOGICAL-c376t-a9292f60503ee725c778e52827062e0e1fff6e69abb74af6184d56fd89e8d4d83</cites><orcidid>0000-0002-3214-9606 ; 0000-0003-1786-8087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2021.105966$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Aledo, Juan A.</creatorcontrib><creatorcontrib>Barzanouni, Ali</creatorcontrib><creatorcontrib>Malekbala, Ghazaleh</creatorcontrib><creatorcontrib>Sharifan, Leila</creatorcontrib><creatorcontrib>Valverde, Jose C.</creatorcontrib><title>Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs</title><title>Communications in nonlinear science & numerical simulation</title><description>•Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also studied.•Illustrative numerical examples to support the validity of the results are provided.
In this work, we solve the fixed-point existence, coexistence and uniqueness problems in the context of homogeneous parallel and sequential dynamical systems on maxterm and minterm Boolean functions over directed dependency graphs. More specifically, we give characterizations for the existence of fixed points. Likewise, we provide a sufficient condition and a necessary one for the non-coexistence of other periods in the dynamics of the system. In addition, we state a necessary and sufficient condition for the uniqueness of a fixed point, what allows us to establish a Fixed-Point Theorem in the sense of Banach for this kind of systems. Finally, we give an advance in the analysis of the number of fixed points of such systems, finding a lower bound for this number in the case of the most simplest maxterm and minterm. Numerical examples are given to show the feasibility of the results. Thus, this work completes the study of the fixed-point problems for homogeneous Boolean finite dynamical systems on maxterm and minterm functions.</description><subject>Banach spaces</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Dominating sets</subject><subject>Dynamical systems</subject><subject>Fixed point theorems</subject><subject>Fixed points (mathematics)</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Lower bounds</subject><subject>Mathematical functions</subject><subject>Network models</subject><subject>Nonlinear equations</subject><subject>Types of periodic orbits</subject><subject>Uniqueness</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxSMEEqXwCVgssZJiO4ntDAyoKn-kSiwwW659BlepE-y0tN8ep4GV6e6s93vne1l2TfCMYMLu1jPto48ziilJL1XN2Ek2IYKLnFNenqYeY55XHJfn2UWMa5youion2fdi72IPXsMt0i38DUh5g7befW3BQ4yotci6PRjUtc73ETmPOhVU00BzlEYYlL1TDTIHrzZOpy4ektkmwTsIyLgAuk8OH0F1n_EyO7OqiXD1W6fZ--Pibf6cL1-fXuYPy1wXnPW5qmlNLcMVLgA4rTTnAioqKMeMAgZirWXAarVa8VJZRkRpKmaNqEGY0ohimt2Mvl1o0xdjL9ftNvi0UlJGWFUIjAdVMap0aGMMYGUX3EaFgyRYDgnLtTwmLIeE5Zhwou5HCtIBOwdBRu2G9MZbpWndv_wPIxWHwA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Aledo, Juan A.</creator><creator>Barzanouni, Ali</creator><creator>Malekbala, Ghazaleh</creator><creator>Sharifan, Leila</creator><creator>Valverde, Jose C.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3214-9606</orcidid><orcidid>https://orcid.org/0000-0003-1786-8087</orcidid></search><sort><creationdate>202112</creationdate><title>Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs</title><author>Aledo, Juan A. ; Barzanouni, Ali ; Malekbala, Ghazaleh ; Sharifan, Leila ; Valverde, Jose C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a9292f60503ee725c778e52827062e0e1fff6e69abb74af6184d56fd89e8d4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach spaces</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Dominating sets</topic><topic>Dynamical systems</topic><topic>Fixed point theorems</topic><topic>Fixed points (mathematics)</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Lower bounds</topic><topic>Mathematical functions</topic><topic>Network models</topic><topic>Nonlinear equations</topic><topic>Types of periodic orbits</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aledo, Juan A.</creatorcontrib><creatorcontrib>Barzanouni, Ali</creatorcontrib><creatorcontrib>Malekbala, Ghazaleh</creatorcontrib><creatorcontrib>Sharifan, Leila</creatorcontrib><creatorcontrib>Valverde, Jose C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aledo, Juan A.</au><au>Barzanouni, Ali</au><au>Malekbala, Ghazaleh</au><au>Sharifan, Leila</au><au>Valverde, Jose C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2021-12</date><risdate>2021</risdate><volume>103</volume><spage>105966</spage><pages>105966-</pages><artnum>105966</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Parallel and sequential dynamical systems over directed graphs are under investigation.•Homogeneous systems with maxterm and minterm evolution operator are considered.•Results on the existence, coexistence and uniqueness of fixed points are proved.•Computation of the number of fixed points is also studied.•Illustrative numerical examples to support the validity of the results are provided.
In this work, we solve the fixed-point existence, coexistence and uniqueness problems in the context of homogeneous parallel and sequential dynamical systems on maxterm and minterm Boolean functions over directed dependency graphs. More specifically, we give characterizations for the existence of fixed points. Likewise, we provide a sufficient condition and a necessary one for the non-coexistence of other periods in the dynamics of the system. In addition, we state a necessary and sufficient condition for the uniqueness of a fixed point, what allows us to establish a Fixed-Point Theorem in the sense of Banach for this kind of systems. Finally, we give an advance in the analysis of the number of fixed points of such systems, finding a lower bound for this number in the case of the most simplest maxterm and minterm. Numerical examples are given to show the feasibility of the results. Thus, this work completes the study of the fixed-point problems for homogeneous Boolean finite dynamical systems on maxterm and minterm functions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2021.105966</doi><orcidid>https://orcid.org/0000-0002-3214-9606</orcidid><orcidid>https://orcid.org/0000-0003-1786-8087</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2021-12, Vol.103, p.105966, Article 105966 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_journals_2616538008 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Banach spaces Boolean algebra Boolean functions Dominating sets Dynamical systems Fixed point theorems Fixed points (mathematics) Graph theory Graphs Lower bounds Mathematical functions Network models Nonlinear equations Types of periodic orbits Uniqueness |
title | Existence, coexistence and uniqueness of fixed points in parallel and sequential dynamical systems over directed graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence,%20coexistence%20and%20uniqueness%20of%20fixed%20points%20in%20parallel%20and%20sequential%20dynamical%20systems%20over%20directed%20graphs&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Aledo,%20Juan%20A.&rft.date=2021-12&rft.volume=103&rft.spage=105966&rft.pages=105966-&rft.artnum=105966&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2021.105966&rft_dat=%3Cproquest_cross%3E2616538008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616538008&rft_id=info:pmid/&rft_els_id=S1007570421002781&rfr_iscdi=true |