Polynomial ring representations of endomorphisms of exterior powers

An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k -th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Collectanea mathematica (Barcelona) 2022, Vol.73 (1), p.107-133
Hauptverfasser: Behzad, Ommolbanin, Contiero, André, Gatto, Letterio, Martins, Renato Vidal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 107
container_title Collectanea mathematica (Barcelona)
container_volume 73
creator Behzad, Ommolbanin
Contiero, André
Gatto, Letterio
Martins, Renato Vidal
description An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k -th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.
doi_str_mv 10.1007/s13348-020-00310-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616377994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616377994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f2b3695afb19fd7c40e61c2b8f21e9027bb0a51aa7a295f2ea4367e83bc128323</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFb_gKeA59WZ3SSbHKWoFQp60POySWc1pcnG2RTtvzc1gjdPA4_3vYFPiEuEawQwNxG1TgsJCiSARpDZkZgp0IVMC8yOxQxgDMFk5lScxbgBSBWimYnFc9juu9A2bptw070lTD1TpG5wQxO6mASfULcObeD-vYntFHwNxE3gpA-fxPFcnHi3jXTxe-fi9f7uZbGUq6eHx8XtStY614P0qtJ5mTlfYenXpk6BcqxVVXiFVIIyVQUuQ-eMU2XmFblU54YKXdWoCq30XFxNuz2Hjx3FwW7CjrvxpVU55tqYskzHlppaNYcYmbztuWkd7y2CPciykyw7yrI_smw2QnqCYn-wQPw3_Q_1DZalbSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616377994</pqid></control><display><type>article</type><title>Polynomial ring representations of endomorphisms of exterior powers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Behzad, Ommolbanin ; Contiero, André ; Gatto, Letterio ; Martins, Renato Vidal</creator><creatorcontrib>Behzad, Ommolbanin ; Contiero, André ; Gatto, Letterio ; Martins, Renato Vidal</creatorcontrib><description>An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k -th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.</description><identifier>ISSN: 0010-0757</identifier><identifier>EISSN: 2038-4815</identifier><identifier>DOI: 10.1007/s13348-020-00310-5</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Lie groups ; Mathematics ; Mathematics and Statistics ; Matrix algebra ; Operators (mathematics) ; Polynomials ; Representations ; Rings (mathematics)</subject><ispartof>Collectanea mathematica (Barcelona), 2022, Vol.73 (1), p.107-133</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f2b3695afb19fd7c40e61c2b8f21e9027bb0a51aa7a295f2ea4367e83bc128323</citedby><cites>FETCH-LOGICAL-c363t-f2b3695afb19fd7c40e61c2b8f21e9027bb0a51aa7a295f2ea4367e83bc128323</cites><orcidid>0000-0002-3446-2663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13348-020-00310-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13348-020-00310-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Behzad, Ommolbanin</creatorcontrib><creatorcontrib>Contiero, André</creatorcontrib><creatorcontrib>Gatto, Letterio</creatorcontrib><creatorcontrib>Martins, Renato Vidal</creatorcontrib><title>Polynomial ring representations of endomorphisms of exterior powers</title><title>Collectanea mathematica (Barcelona)</title><addtitle>Collect. Math</addtitle><description>An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k -th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix algebra</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Rings (mathematics)</subject><issn>0010-0757</issn><issn>2038-4815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLw0AQhRdRsFb_gKeA59WZ3SSbHKWoFQp60POySWc1pcnG2RTtvzc1gjdPA4_3vYFPiEuEawQwNxG1TgsJCiSARpDZkZgp0IVMC8yOxQxgDMFk5lScxbgBSBWimYnFc9juu9A2bptw070lTD1TpG5wQxO6mASfULcObeD-vYntFHwNxE3gpA-fxPFcnHi3jXTxe-fi9f7uZbGUq6eHx8XtStY614P0qtJ5mTlfYenXpk6BcqxVVXiFVIIyVQUuQ-eMU2XmFblU54YKXdWoCq30XFxNuz2Hjx3FwW7CjrvxpVU55tqYskzHlppaNYcYmbztuWkd7y2CPciykyw7yrI_smw2QnqCYn-wQPw3_Q_1DZalbSw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Behzad, Ommolbanin</creator><creator>Contiero, André</creator><creator>Gatto, Letterio</creator><creator>Martins, Renato Vidal</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3446-2663</orcidid></search><sort><creationdate>2022</creationdate><title>Polynomial ring representations of endomorphisms of exterior powers</title><author>Behzad, Ommolbanin ; Contiero, André ; Gatto, Letterio ; Martins, Renato Vidal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f2b3695afb19fd7c40e61c2b8f21e9027bb0a51aa7a295f2ea4367e83bc128323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix algebra</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behzad, Ommolbanin</creatorcontrib><creatorcontrib>Contiero, André</creatorcontrib><creatorcontrib>Gatto, Letterio</creatorcontrib><creatorcontrib>Martins, Renato Vidal</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Collectanea mathematica (Barcelona)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behzad, Ommolbanin</au><au>Contiero, André</au><au>Gatto, Letterio</au><au>Martins, Renato Vidal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial ring representations of endomorphisms of exterior powers</atitle><jtitle>Collectanea mathematica (Barcelona)</jtitle><stitle>Collect. Math</stitle><date>2022</date><risdate>2022</risdate><volume>73</volume><issue>1</issue><spage>107</spage><epage>133</epage><pages>107-133</pages><issn>0010-0757</issn><eissn>2038-4815</eissn><abstract>An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k -th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s13348-020-00310-5</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-3446-2663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-0757
ispartof Collectanea mathematica (Barcelona), 2022, Vol.73 (1), p.107-133
issn 0010-0757
2038-4815
language eng
recordid cdi_proquest_journals_2616377994
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Lie groups
Mathematics
Mathematics and Statistics
Matrix algebra
Operators (mathematics)
Polynomials
Representations
Rings (mathematics)
title Polynomial ring representations of endomorphisms of exterior powers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20ring%20representations%20of%20endomorphisms%20of%20exterior%20powers&rft.jtitle=Collectanea%20mathematica%20(Barcelona)&rft.au=Behzad,%20Ommolbanin&rft.date=2022&rft.volume=73&rft.issue=1&rft.spage=107&rft.epage=133&rft.pages=107-133&rft.issn=0010-0757&rft.eissn=2038-4815&rft_id=info:doi/10.1007/s13348-020-00310-5&rft_dat=%3Cproquest_cross%3E2616377994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616377994&rft_id=info:pmid/&rfr_iscdi=true