Polynomial ring representations of endomorphisms of exterior powers

An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k -th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Collectanea mathematica (Barcelona) 2022, Vol.73 (1), p.107-133
Hauptverfasser: Behzad, Ommolbanin, Contiero, André, Gatto, Letterio, Martins, Renato Vidal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k -th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.
ISSN:0010-0757
2038-4815
DOI:10.1007/s13348-020-00310-5