NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries
A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2021-12, Vol.399, p.139438, Article 139438 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 139438 |
container_title | Electrochimica acta |
container_volume | 399 |
creator | ELBOUAZZAOUI, Kenza SROUT, Mohammed SAADOUNE, Ismael BIH, Lahcen YOUCEF, Hicham BEN DAHBI, Mouad MANSORI, Mohammed |
description | A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)3 materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g − 1 was obtained for the Mg-based phosphate, 104.3 mAh.g − 1 for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g − 1 with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C.
[Display omitted] |
doi_str_mv | 10.1016/j.electacta.2021.139438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616228511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346862101728X</els_id><sourcerecordid>2616228511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-2d94a680f4dd09e2c886a242116d52ded5d398b3fa5714b466e7ee35dbec3173</originalsourceid><addsrcrecordid>eNqFUNtKAzEQDaJgvXyDAV8U3DWXTTb74EMpXgqtFex7SDezNqVt1mQr-Dd-S7_M1IqvwgwzzJwzl4PQBSU5JVTeLnJYQt2ZZDkjjOaUVwVXB6hHVckzrkR1iHqEUJ4VUsljdBLjghBSypL00Oa5_zocTJ6z7rMFPHIkF-PkU0dz8QApu3qZFNccX423X3fbr_H6Bg_8DR6_XeN27mM7Nx1EbCL-OSJ4C3iVSsGZZcSND3jpurnbrDLn13hmul0L4hk6ahIAzn_jKZo-3E8HT9lo8jgc9EdZzYTqMmarwkhFmsJaUgGrlZKGFYxSaQWzYIXllZrxxoiSFrNCSigBuLAzqDkt-Sm63I9tg3_fQOz0wm_COm3UTFLJmBKUJlS5R9XBxxig0W1wKxM-NSV6J7Fe6D-J9U5ivZc4Mft7JqQfPhwEHWsH6xqsCwmvrXf_zvgGs1WGdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616228511</pqid></control><display><type>article</type><title>NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>ELBOUAZZAOUI, Kenza ; SROUT, Mohammed ; SAADOUNE, Ismael ; BIH, Lahcen ; YOUCEF, Hicham BEN ; DAHBI, Mouad ; MANSORI, Mohammed</creator><creatorcontrib>ELBOUAZZAOUI, Kenza ; SROUT, Mohammed ; SAADOUNE, Ismael ; BIH, Lahcen ; YOUCEF, Hicham BEN ; DAHBI, Mouad ; MANSORI, Mohammed</creatorcontrib><description>A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)3 materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g − 1 was obtained for the Mg-based phosphate, 104.3 mAh.g − 1 for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g − 1 with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C.
[Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.139438</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Crystal structure ; Discharge ; Divalent cations ; Electrochemical analysis ; Electrode materials ; Electrode polarization ; Electrodes ; Energy storage ; Ion currents ; Ionic conductivity ; Lithium ; Lithium-ion batteries ; Magnesium ; Manganese ; NASICON type-structure ; Phosphates ; Rechargeable batteries ; Room temperature ; Sol-gel processes ; Tetrahedra ; Unit cell</subject><ispartof>Electrochimica acta, 2021-12, Vol.399, p.139438, Article 139438</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 10, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-2d94a680f4dd09e2c886a242116d52ded5d398b3fa5714b466e7ee35dbec3173</citedby><cites>FETCH-LOGICAL-c258t-2d94a680f4dd09e2c886a242116d52ded5d398b3fa5714b466e7ee35dbec3173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.139438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>ELBOUAZZAOUI, Kenza</creatorcontrib><creatorcontrib>SROUT, Mohammed</creatorcontrib><creatorcontrib>SAADOUNE, Ismael</creatorcontrib><creatorcontrib>BIH, Lahcen</creatorcontrib><creatorcontrib>YOUCEF, Hicham BEN</creatorcontrib><creatorcontrib>DAHBI, Mouad</creatorcontrib><creatorcontrib>MANSORI, Mohammed</creatorcontrib><title>NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries</title><title>Electrochimica acta</title><description>A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)3 materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g − 1 was obtained for the Mg-based phosphate, 104.3 mAh.g − 1 for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g − 1 with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C.
[Display omitted]</description><subject>Crystal structure</subject><subject>Discharge</subject><subject>Divalent cations</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Ion currents</subject><subject>Ionic conductivity</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>NASICON type-structure</subject><subject>Phosphates</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Sol-gel processes</subject><subject>Tetrahedra</subject><subject>Unit cell</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUNtKAzEQDaJgvXyDAV8U3DWXTTb74EMpXgqtFex7SDezNqVt1mQr-Dd-S7_M1IqvwgwzzJwzl4PQBSU5JVTeLnJYQt2ZZDkjjOaUVwVXB6hHVckzrkR1iHqEUJ4VUsljdBLjghBSypL00Oa5_zocTJ6z7rMFPHIkF-PkU0dz8QApu3qZFNccX423X3fbr_H6Bg_8DR6_XeN27mM7Nx1EbCL-OSJ4C3iVSsGZZcSND3jpurnbrDLn13hmul0L4hk6ahIAzn_jKZo-3E8HT9lo8jgc9EdZzYTqMmarwkhFmsJaUgGrlZKGFYxSaQWzYIXllZrxxoiSFrNCSigBuLAzqDkt-Sm63I9tg3_fQOz0wm_COm3UTFLJmBKUJlS5R9XBxxig0W1wKxM-NSV6J7Fe6D-J9U5ivZc4Mft7JqQfPhwEHWsH6xqsCwmvrXf_zvgGs1WGdQ</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>ELBOUAZZAOUI, Kenza</creator><creator>SROUT, Mohammed</creator><creator>SAADOUNE, Ismael</creator><creator>BIH, Lahcen</creator><creator>YOUCEF, Hicham BEN</creator><creator>DAHBI, Mouad</creator><creator>MANSORI, Mohammed</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20211210</creationdate><title>NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries</title><author>ELBOUAZZAOUI, Kenza ; SROUT, Mohammed ; SAADOUNE, Ismael ; BIH, Lahcen ; YOUCEF, Hicham BEN ; DAHBI, Mouad ; MANSORI, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-2d94a680f4dd09e2c886a242116d52ded5d398b3fa5714b466e7ee35dbec3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal structure</topic><topic>Discharge</topic><topic>Divalent cations</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Ion currents</topic><topic>Ionic conductivity</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>NASICON type-structure</topic><topic>Phosphates</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Sol-gel processes</topic><topic>Tetrahedra</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELBOUAZZAOUI, Kenza</creatorcontrib><creatorcontrib>SROUT, Mohammed</creatorcontrib><creatorcontrib>SAADOUNE, Ismael</creatorcontrib><creatorcontrib>BIH, Lahcen</creatorcontrib><creatorcontrib>YOUCEF, Hicham BEN</creatorcontrib><creatorcontrib>DAHBI, Mouad</creatorcontrib><creatorcontrib>MANSORI, Mohammed</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ELBOUAZZAOUI, Kenza</au><au>SROUT, Mohammed</au><au>SAADOUNE, Ismael</au><au>BIH, Lahcen</au><au>YOUCEF, Hicham BEN</au><au>DAHBI, Mouad</au><au>MANSORI, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2021-12-10</date><risdate>2021</risdate><volume>399</volume><spage>139438</spage><pages>139438-</pages><artnum>139438</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)3 materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g − 1 was obtained for the Mg-based phosphate, 104.3 mAh.g − 1 for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g − 1 with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C.
[Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.139438</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2021-12, Vol.399, p.139438, Article 139438 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2616228511 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Crystal structure Discharge Divalent cations Electrochemical analysis Electrode materials Electrode polarization Electrodes Energy storage Ion currents Ionic conductivity Lithium Lithium-ion batteries Magnesium Manganese NASICON type-structure Phosphates Rechargeable batteries Room temperature Sol-gel processes Tetrahedra Unit cell |
title | NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NASICON-type%20Li0.5M0.5Ti1.5Fe0.5(PO4)3%20(M%C2%A0=%C2%A0Mn,%20Co,%20Mg)%20phosphates%20as%20electrode%20materials%20for%20lithium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=ELBOUAZZAOUI,%20Kenza&rft.date=2021-12-10&rft.volume=399&rft.spage=139438&rft.pages=139438-&rft.artnum=139438&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.139438&rft_dat=%3Cproquest_cross%3E2616228511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616228511&rft_id=info:pmid/&rft_els_id=S001346862101728X&rfr_iscdi=true |