NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries

A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-12, Vol.399, p.139438, Article 139438
Hauptverfasser: ELBOUAZZAOUI, Kenza, SROUT, Mohammed, SAADOUNE, Ismael, BIH, Lahcen, YOUCEF, Hicham BEN, DAHBI, Mouad, MANSORI, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 139438
container_title Electrochimica acta
container_volume 399
creator ELBOUAZZAOUI, Kenza
SROUT, Mohammed
SAADOUNE, Ismael
BIH, Lahcen
YOUCEF, Hicham BEN
DAHBI, Mouad
MANSORI, Mohammed
description A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)3 materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g − 1 was obtained for the Mg-based phosphate, 104.3 mAh.g − 1 for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g − 1 with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C. [Display omitted]
doi_str_mv 10.1016/j.electacta.2021.139438
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616228511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346862101728X</els_id><sourcerecordid>2616228511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-2d94a680f4dd09e2c886a242116d52ded5d398b3fa5714b466e7ee35dbec3173</originalsourceid><addsrcrecordid>eNqFUNtKAzEQDaJgvXyDAV8U3DWXTTb74EMpXgqtFex7SDezNqVt1mQr-Dd-S7_M1IqvwgwzzJwzl4PQBSU5JVTeLnJYQt2ZZDkjjOaUVwVXB6hHVckzrkR1iHqEUJ4VUsljdBLjghBSypL00Oa5_zocTJ6z7rMFPHIkF-PkU0dz8QApu3qZFNccX423X3fbr_H6Bg_8DR6_XeN27mM7Nx1EbCL-OSJ4C3iVSsGZZcSND3jpurnbrDLn13hmul0L4hk6ahIAzn_jKZo-3E8HT9lo8jgc9EdZzYTqMmarwkhFmsJaUgGrlZKGFYxSaQWzYIXllZrxxoiSFrNCSigBuLAzqDkt-Sm63I9tg3_fQOz0wm_COm3UTFLJmBKUJlS5R9XBxxig0W1wKxM-NSV6J7Fe6D-J9U5ivZc4Mft7JqQfPhwEHWsH6xqsCwmvrXf_zvgGs1WGdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616228511</pqid></control><display><type>article</type><title>NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>ELBOUAZZAOUI, Kenza ; SROUT, Mohammed ; SAADOUNE, Ismael ; BIH, Lahcen ; YOUCEF, Hicham BEN ; DAHBI, Mouad ; MANSORI, Mohammed</creator><creatorcontrib>ELBOUAZZAOUI, Kenza ; SROUT, Mohammed ; SAADOUNE, Ismael ; BIH, Lahcen ; YOUCEF, Hicham BEN ; DAHBI, Mouad ; MANSORI, Mohammed</creatorcontrib><description>A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)3 materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g − 1 was obtained for the Mg-based phosphate, 104.3 mAh.g − 1 for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g − 1 with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.139438</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Crystal structure ; Discharge ; Divalent cations ; Electrochemical analysis ; Electrode materials ; Electrode polarization ; Electrodes ; Energy storage ; Ion currents ; Ionic conductivity ; Lithium ; Lithium-ion batteries ; Magnesium ; Manganese ; NASICON type-structure ; Phosphates ; Rechargeable batteries ; Room temperature ; Sol-gel processes ; Tetrahedra ; Unit cell</subject><ispartof>Electrochimica acta, 2021-12, Vol.399, p.139438, Article 139438</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 10, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-2d94a680f4dd09e2c886a242116d52ded5d398b3fa5714b466e7ee35dbec3173</citedby><cites>FETCH-LOGICAL-c258t-2d94a680f4dd09e2c886a242116d52ded5d398b3fa5714b466e7ee35dbec3173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.139438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>ELBOUAZZAOUI, Kenza</creatorcontrib><creatorcontrib>SROUT, Mohammed</creatorcontrib><creatorcontrib>SAADOUNE, Ismael</creatorcontrib><creatorcontrib>BIH, Lahcen</creatorcontrib><creatorcontrib>YOUCEF, Hicham BEN</creatorcontrib><creatorcontrib>DAHBI, Mouad</creatorcontrib><creatorcontrib>MANSORI, Mohammed</creatorcontrib><title>NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries</title><title>Electrochimica acta</title><description>A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)3 materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g − 1 was obtained for the Mg-based phosphate, 104.3 mAh.g − 1 for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g − 1 with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C. [Display omitted]</description><subject>Crystal structure</subject><subject>Discharge</subject><subject>Divalent cations</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Ion currents</subject><subject>Ionic conductivity</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>NASICON type-structure</subject><subject>Phosphates</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Sol-gel processes</subject><subject>Tetrahedra</subject><subject>Unit cell</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUNtKAzEQDaJgvXyDAV8U3DWXTTb74EMpXgqtFex7SDezNqVt1mQr-Dd-S7_M1IqvwgwzzJwzl4PQBSU5JVTeLnJYQt2ZZDkjjOaUVwVXB6hHVckzrkR1iHqEUJ4VUsljdBLjghBSypL00Oa5_zocTJ6z7rMFPHIkF-PkU0dz8QApu3qZFNccX423X3fbr_H6Bg_8DR6_XeN27mM7Nx1EbCL-OSJ4C3iVSsGZZcSND3jpurnbrDLn13hmul0L4hk6ahIAzn_jKZo-3E8HT9lo8jgc9EdZzYTqMmarwkhFmsJaUgGrlZKGFYxSaQWzYIXllZrxxoiSFrNCSigBuLAzqDkt-Sm63I9tg3_fQOz0wm_COm3UTFLJmBKUJlS5R9XBxxig0W1wKxM-NSV6J7Fe6D-J9U5ivZc4Mft7JqQfPhwEHWsH6xqsCwmvrXf_zvgGs1WGdQ</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>ELBOUAZZAOUI, Kenza</creator><creator>SROUT, Mohammed</creator><creator>SAADOUNE, Ismael</creator><creator>BIH, Lahcen</creator><creator>YOUCEF, Hicham BEN</creator><creator>DAHBI, Mouad</creator><creator>MANSORI, Mohammed</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20211210</creationdate><title>NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries</title><author>ELBOUAZZAOUI, Kenza ; SROUT, Mohammed ; SAADOUNE, Ismael ; BIH, Lahcen ; YOUCEF, Hicham BEN ; DAHBI, Mouad ; MANSORI, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-2d94a680f4dd09e2c886a242116d52ded5d398b3fa5714b466e7ee35dbec3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal structure</topic><topic>Discharge</topic><topic>Divalent cations</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Ion currents</topic><topic>Ionic conductivity</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>NASICON type-structure</topic><topic>Phosphates</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Sol-gel processes</topic><topic>Tetrahedra</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELBOUAZZAOUI, Kenza</creatorcontrib><creatorcontrib>SROUT, Mohammed</creatorcontrib><creatorcontrib>SAADOUNE, Ismael</creatorcontrib><creatorcontrib>BIH, Lahcen</creatorcontrib><creatorcontrib>YOUCEF, Hicham BEN</creatorcontrib><creatorcontrib>DAHBI, Mouad</creatorcontrib><creatorcontrib>MANSORI, Mohammed</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ELBOUAZZAOUI, Kenza</au><au>SROUT, Mohammed</au><au>SAADOUNE, Ismael</au><au>BIH, Lahcen</au><au>YOUCEF, Hicham BEN</au><au>DAHBI, Mouad</au><au>MANSORI, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2021-12-10</date><risdate>2021</risdate><volume>399</volume><spage>139438</spage><pages>139438-</pages><artnum>139438</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>A correlation between the crystal structure, the ionic conductivity and the electrochemical performance in Lithium-ion batteries was established for a series of NASICON-type phosphates Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg). These electrode materials, where the M1 site contains both lithium and the divalent cation M, were prepared using a simple sol-gel process while controlling the pH and the final synthesis temperature. The three phosphates crystallize in the rhombohedral system (S.G. R-3c) with comparable unit cell parameters but with slight difference in the local distortion of the PO4 tetrahedra as confirmed by the Raman study. The ionic conductivities of the Li0.5M0.5Ti1.5Fe0.5(PO4)3 materials were measured at different temperatures using a wide range of frequencies. Mn-based phosphate shows the best features for application as electrode material for Li-ion batteries in term of the conductivity at room temperature and the activation energy of Li+ conduction process. The initial discharge capacity of 100 mAh.g − 1 was obtained for the Mg-based phosphate, 104.3 mAh.g − 1 for the Co-based material while the Mn-based material delivers the best first discharge capacity of 125.3 mAh.g − 1 with the lowest polarization in relation with its better conduction properties. This result was also confirmed by the rate capability tests where Mn-based phosphate shows enhanced electrochemical performance even at fast rate of 5C. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.139438</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-12, Vol.399, p.139438, Article 139438
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2616228511
source ScienceDirect Journals (5 years ago - present)
subjects Crystal structure
Discharge
Divalent cations
Electrochemical analysis
Electrode materials
Electrode polarization
Electrodes
Energy storage
Ion currents
Ionic conductivity
Lithium
Lithium-ion batteries
Magnesium
Manganese
NASICON type-structure
Phosphates
Rechargeable batteries
Room temperature
Sol-gel processes
Tetrahedra
Unit cell
title NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NASICON-type%20Li0.5M0.5Ti1.5Fe0.5(PO4)3%20(M%C2%A0=%C2%A0Mn,%20Co,%20Mg)%20phosphates%20as%20electrode%20materials%20for%20lithium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=ELBOUAZZAOUI,%20Kenza&rft.date=2021-12-10&rft.volume=399&rft.spage=139438&rft.pages=139438-&rft.artnum=139438&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.139438&rft_dat=%3Cproquest_cross%3E2616228511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616228511&rft_id=info:pmid/&rft_els_id=S001346862101728X&rfr_iscdi=true