Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids

•An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their characteristic differences.•Comparison of structural differences in terms of number of variables, constraints and non-zeros in Jacobian and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2022-01, Vol.202, p.107594, Article 107594
Hauptverfasser: Nair, Arun Sukumaran, Abhyankar, Shrirang, Peles, Slaven, Ranganathan, Prakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107594
container_title Electric power systems research
container_volume 202
creator Nair, Arun Sukumaran
Abhyankar, Shrirang
Peles, Slaven
Ranganathan, Prakash
description •An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their characteristic differences.•Comparison of structural differences in terms of number of variables, constraints and non-zeros in Jacobian and hessian matrix.•Numerical and computational performance evaluation for the AC-OPF formulations on nine different test cases including large-scale synthetic U.S. networks. Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal operation of the various resources. Typically, the AC-OPF problem uses power balance formulation containing voltages and power equations. Yet, there is no comprehensive comparison of the different AC-OPF formulations, especially for large-scale networks. This paper presents a detailed comparative evaluation of different formulations of the AC-OPF problem on networks ranging from 9-bus to 25,000 buses. Three different formulations: 1) power balance with polar voltages, 2) power balance with Cartesian voltages, and 3) current balance with Cartesian voltages are discussed in detail by comparing their characteristics, and numerical and computational performance. We compare the performance of the three methods in terms of computational speed, number of iterations, and number of non-zeros in Jacobian and Hessian matrix. The numerical results show that power balance polar formulation had the best performance on small number of bus system but on a large-scale test grid current balance cartesian outperformed the other two formulations.
doi_str_mv 10.1016/j.epsr.2021.107594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616225232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779621005757</els_id><sourcerecordid>2616225232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-179a6966b69c38d830466d8a9b9e38e97fca6b4456844ffb380a6c5960fce04f3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz13TpE0a8LIU_8GCFz2HNJ0sKW1Tk9bFb292u2dPwzzeb5j3ELrP8CbDGXtsNzAGvyGYZFHghcgv0CorOU0JztklWmHKy5Rzwa7RTQgtxpgJXqwQVK4f50lN1g2qS9TQJMPcg7f6tKnuN9iQOJNsq8SNk-2jPLoD-MR07pAY5_u5O9HRNSSd8ntIQ4ThbNt724RbdGVUF-DuPNfo6-X5s3pLdx-v79V2l2rKyZRmXCgmGKuZ0LRsShp_Z02pRC2AliC40YrVeV6wMs-NqWmJFdOFYNhowLmha_Sw3B29-54hTLJ1s48pgiQsY4QUhJLoIotLexeCByNHH4P5X5lheaxTtvJYpzzWKZc6I_S0QBD__7HgZdAWBg2N9aAn2Tj7H_4HEQx_HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616225232</pqid></control><display><type>article</type><title>Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids</title><source>Elsevier ScienceDirect Journals</source><creator>Nair, Arun Sukumaran ; Abhyankar, Shrirang ; Peles, Slaven ; Ranganathan, Prakash</creator><creatorcontrib>Nair, Arun Sukumaran ; Abhyankar, Shrirang ; Peles, Slaven ; Ranganathan, Prakash</creatorcontrib><description>•An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their characteristic differences.•Comparison of structural differences in terms of number of variables, constraints and non-zeros in Jacobian and hessian matrix.•Numerical and computational performance evaluation for the AC-OPF formulations on nine different test cases including large-scale synthetic U.S. networks. Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal operation of the various resources. Typically, the AC-OPF problem uses power balance formulation containing voltages and power equations. Yet, there is no comprehensive comparison of the different AC-OPF formulations, especially for large-scale networks. This paper presents a detailed comparative evaluation of different formulations of the AC-OPF problem on networks ranging from 9-bus to 25,000 buses. Three different formulations: 1) power balance with polar voltages, 2) power balance with Cartesian voltages, and 3) current balance with Cartesian voltages are discussed in detail by comparing their characteristics, and numerical and computational performance. We compare the performance of the three methods in terms of computational speed, number of iterations, and number of non-zeros in Jacobian and Hessian matrix. The numerical results show that power balance polar formulation had the best performance on small number of bus system but on a large-scale test grid current balance cartesian outperformed the other two formulations.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2021.107594</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AC optimal power flow ; Alternating current ; Cartesian coordinates ; Electric power grids ; Electric utilities ; Electricity ; Formulation ; Grid operation ; Hessian matrices ; Large-scale power grids ; Mathematical models ; Numerical analysis ; Optimization ; Power flow</subject><ispartof>Electric power systems research, 2022-01, Vol.202, p.107594, Article 107594</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-179a6966b69c38d830466d8a9b9e38e97fca6b4456844ffb380a6c5960fce04f3</citedby><cites>FETCH-LOGICAL-c372t-179a6966b69c38d830466d8a9b9e38e97fca6b4456844ffb380a6c5960fce04f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378779621005757$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nair, Arun Sukumaran</creatorcontrib><creatorcontrib>Abhyankar, Shrirang</creatorcontrib><creatorcontrib>Peles, Slaven</creatorcontrib><creatorcontrib>Ranganathan, Prakash</creatorcontrib><title>Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids</title><title>Electric power systems research</title><description>•An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their characteristic differences.•Comparison of structural differences in terms of number of variables, constraints and non-zeros in Jacobian and hessian matrix.•Numerical and computational performance evaluation for the AC-OPF formulations on nine different test cases including large-scale synthetic U.S. networks. Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal operation of the various resources. Typically, the AC-OPF problem uses power balance formulation containing voltages and power equations. Yet, there is no comprehensive comparison of the different AC-OPF formulations, especially for large-scale networks. This paper presents a detailed comparative evaluation of different formulations of the AC-OPF problem on networks ranging from 9-bus to 25,000 buses. Three different formulations: 1) power balance with polar voltages, 2) power balance with Cartesian voltages, and 3) current balance with Cartesian voltages are discussed in detail by comparing their characteristics, and numerical and computational performance. We compare the performance of the three methods in terms of computational speed, number of iterations, and number of non-zeros in Jacobian and Hessian matrix. The numerical results show that power balance polar formulation had the best performance on small number of bus system but on a large-scale test grid current balance cartesian outperformed the other two formulations.</description><subject>AC optimal power flow</subject><subject>Alternating current</subject><subject>Cartesian coordinates</subject><subject>Electric power grids</subject><subject>Electric utilities</subject><subject>Electricity</subject><subject>Formulation</subject><subject>Grid operation</subject><subject>Hessian matrices</subject><subject>Large-scale power grids</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Power flow</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz13TpE0a8LIU_8GCFz2HNJ0sKW1Tk9bFb292u2dPwzzeb5j3ELrP8CbDGXtsNzAGvyGYZFHghcgv0CorOU0JztklWmHKy5Rzwa7RTQgtxpgJXqwQVK4f50lN1g2qS9TQJMPcg7f6tKnuN9iQOJNsq8SNk-2jPLoD-MR07pAY5_u5O9HRNSSd8ntIQ4ThbNt724RbdGVUF-DuPNfo6-X5s3pLdx-v79V2l2rKyZRmXCgmGKuZ0LRsShp_Z02pRC2AliC40YrVeV6wMs-NqWmJFdOFYNhowLmha_Sw3B29-54hTLJ1s48pgiQsY4QUhJLoIotLexeCByNHH4P5X5lheaxTtvJYpzzWKZc6I_S0QBD__7HgZdAWBg2N9aAn2Tj7H_4HEQx_HA</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Nair, Arun Sukumaran</creator><creator>Abhyankar, Shrirang</creator><creator>Peles, Slaven</creator><creator>Ranganathan, Prakash</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202201</creationdate><title>Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids</title><author>Nair, Arun Sukumaran ; Abhyankar, Shrirang ; Peles, Slaven ; Ranganathan, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-179a6966b69c38d830466d8a9b9e38e97fca6b4456844ffb380a6c5960fce04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AC optimal power flow</topic><topic>Alternating current</topic><topic>Cartesian coordinates</topic><topic>Electric power grids</topic><topic>Electric utilities</topic><topic>Electricity</topic><topic>Formulation</topic><topic>Grid operation</topic><topic>Hessian matrices</topic><topic>Large-scale power grids</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Power flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Arun Sukumaran</creatorcontrib><creatorcontrib>Abhyankar, Shrirang</creatorcontrib><creatorcontrib>Peles, Slaven</creatorcontrib><creatorcontrib>Ranganathan, Prakash</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Arun Sukumaran</au><au>Abhyankar, Shrirang</au><au>Peles, Slaven</au><au>Ranganathan, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids</atitle><jtitle>Electric power systems research</jtitle><date>2022-01</date><risdate>2022</risdate><volume>202</volume><spage>107594</spage><pages>107594-</pages><artnum>107594</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•An in-depth comparison of the AC-OPF model for three formulations: power balance polar, power balance Cartesian and current balance Cartesian presenting their characteristic differences.•Comparison of structural differences in terms of number of variables, constraints and non-zeros in Jacobian and hessian matrix.•Numerical and computational performance evaluation for the AC-OPF formulations on nine different test cases including large-scale synthetic U.S. networks. Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal operation of the various resources. Typically, the AC-OPF problem uses power balance formulation containing voltages and power equations. Yet, there is no comprehensive comparison of the different AC-OPF formulations, especially for large-scale networks. This paper presents a detailed comparative evaluation of different formulations of the AC-OPF problem on networks ranging from 9-bus to 25,000 buses. Three different formulations: 1) power balance with polar voltages, 2) power balance with Cartesian voltages, and 3) current balance with Cartesian voltages are discussed in detail by comparing their characteristics, and numerical and computational performance. We compare the performance of the three methods in terms of computational speed, number of iterations, and number of non-zeros in Jacobian and Hessian matrix. The numerical results show that power balance polar formulation had the best performance on small number of bus system but on a large-scale test grid current balance cartesian outperformed the other two formulations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2021.107594</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2022-01, Vol.202, p.107594, Article 107594
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2616225232
source Elsevier ScienceDirect Journals
subjects AC optimal power flow
Alternating current
Cartesian coordinates
Electric power grids
Electric utilities
Electricity
Formulation
Grid operation
Hessian matrices
Large-scale power grids
Mathematical models
Numerical analysis
Optimization
Power flow
title Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20and%20numerical%20analysis%20of%20AC%20optimal%20power%20flow%20formulations%20on%20large-scale%20power%20grids&rft.jtitle=Electric%20power%20systems%20research&rft.au=Nair,%20Arun%20Sukumaran&rft.date=2022-01&rft.volume=202&rft.spage=107594&rft.pages=107594-&rft.artnum=107594&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2021.107594&rft_dat=%3Cproquest_cross%3E2616225232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616225232&rft_id=info:pmid/&rft_els_id=S0378779621005757&rfr_iscdi=true