Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework

Despite the importance and accuracy of empirical models, most of the existing models are only accurate on the collected experimental data. Adding new data, or even considering noise or variance in the data leads to loss of model accuracy. The objective of this paper is to alleviate overfitting and d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica polytechnica. Civil engineering. Bauingenieurwesen 2022-01, Vol.66 (1), p.18
Hauptverfasser: Ali, Kaveh, Seyed Mohammad Javadi, Moghani, Roya Mahdipour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 18
container_title Periodica polytechnica. Civil engineering. Bauingenieurwesen
container_volume 66
creator Ali, Kaveh
Seyed Mohammad Javadi
Moghani, Roya Mahdipour
description Despite the importance and accuracy of empirical models, most of the existing models are only accurate on the collected experimental data. Adding new data, or even considering noise or variance in the data leads to loss of model accuracy. The objective of this paper is to alleviate overfitting and develop a more accurate and reliable alternative method using a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework for the prediction of the ultimate shear strength of FRP-reinforced concrete beams without stirrups. To enhance the robustness of the results, make full use of training samples (without the validation set), and alleviate the randomness in selecting test samples, the K-Fold Cross Validation method is employed. Using a dataset including 205 samples, results show that the extreme gradient boosting framework (XGBoost) providing better prediction. In fact, XGBoost results have higher precision and higher generalization in comparison with the empirical equations, the current design codes of practice, Least Absolute Shrinkage and Selection Operator model (LASSO), and Random Forest model (RF).
doi_str_mv 10.3311/PPci.18901
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2615869741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615869741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-ff45a5af4f4300b2f253e559e54c08f334b0ce2a565e31c0df5112369d12372e3</originalsourceid><addsrcrecordid>eNotkEFPAjEUhBujiYhe_AVNPC-2ffu67FEIoAmJG5EzKd1XWJRW2xL9-a7Ry8xh8s0kw9itFCMAKe-bxnYjOa6FPGMDieOqgKqCczYQiFBorfQlu0rpIIRGADFgu9WeTOSrHMnv8p43kdrO5i54HhyfvzRFpM67EC21fBq8jZSJT8gcE1-nzu-48Xz23eNH4oto2o585pMQUv4N59Ec6SvEt2t24cx7opt_H7L1fPY6fSyWz4un6cOysEqLXDhXokHjSleCEFvlFAIh1oSlFWMHUG6FJWVQI4G0onUopQJdt71WimDI7v56P2L4PFHKm0M4Rd9PbpTuD9F1VUr4AROdV9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615869741</pqid></control><display><type>article</type><title>Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ali, Kaveh ; Seyed Mohammad Javadi ; Moghani, Roya Mahdipour</creator><creatorcontrib>Ali, Kaveh ; Seyed Mohammad Javadi ; Moghani, Roya Mahdipour</creatorcontrib><description>Despite the importance and accuracy of empirical models, most of the existing models are only accurate on the collected experimental data. Adding new data, or even considering noise or variance in the data leads to loss of model accuracy. The objective of this paper is to alleviate overfitting and develop a more accurate and reliable alternative method using a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework for the prediction of the ultimate shear strength of FRP-reinforced concrete beams without stirrups. To enhance the robustness of the results, make full use of training samples (without the validation set), and alleviate the randomness in selecting test samples, the K-Fold Cross Validation method is employed. Using a dataset including 205 samples, results show that the extreme gradient boosting framework (XGBoost) providing better prediction. In fact, XGBoost results have higher precision and higher generalization in comparison with the empirical equations, the current design codes of practice, Least Absolute Shrinkage and Selection Operator model (LASSO), and Random Forest model (RF).</description><identifier>ISSN: 0553-6626</identifier><identifier>EISSN: 1587-3773</identifier><identifier>DOI: 10.3311/PPci.18901</identifier><language>eng</language><publisher>Budapest: Periodica Polytechnica, Budapest University of Technology and Economics</publisher><subject>Accuracy ; Algorithms ; Codes of Practice ; Decision trees ; Empirical equations ; Frameworks ; Learning algorithms ; Machine learning ; Model accuracy ; Predictions ; Reinforced concrete ; Shear strength ; Stirrups ; Training</subject><ispartof>Periodica polytechnica. Civil engineering. Bauingenieurwesen, 2022-01, Vol.66 (1), p.18</ispartof><rights>Copyright Periodica Polytechnica, Budapest University of Technology and Economics 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-ff45a5af4f4300b2f253e559e54c08f334b0ce2a565e31c0df5112369d12372e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ali, Kaveh</creatorcontrib><creatorcontrib>Seyed Mohammad Javadi</creatorcontrib><creatorcontrib>Moghani, Roya Mahdipour</creatorcontrib><title>Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework</title><title>Periodica polytechnica. Civil engineering. Bauingenieurwesen</title><description>Despite the importance and accuracy of empirical models, most of the existing models are only accurate on the collected experimental data. Adding new data, or even considering noise or variance in the data leads to loss of model accuracy. The objective of this paper is to alleviate overfitting and develop a more accurate and reliable alternative method using a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework for the prediction of the ultimate shear strength of FRP-reinforced concrete beams without stirrups. To enhance the robustness of the results, make full use of training samples (without the validation set), and alleviate the randomness in selecting test samples, the K-Fold Cross Validation method is employed. Using a dataset including 205 samples, results show that the extreme gradient boosting framework (XGBoost) providing better prediction. In fact, XGBoost results have higher precision and higher generalization in comparison with the empirical equations, the current design codes of practice, Least Absolute Shrinkage and Selection Operator model (LASSO), and Random Forest model (RF).</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Codes of Practice</subject><subject>Decision trees</subject><subject>Empirical equations</subject><subject>Frameworks</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Predictions</subject><subject>Reinforced concrete</subject><subject>Shear strength</subject><subject>Stirrups</subject><subject>Training</subject><issn>0553-6626</issn><issn>1587-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFPAjEUhBujiYhe_AVNPC-2ffu67FEIoAmJG5EzKd1XWJRW2xL9-a7Ry8xh8s0kw9itFCMAKe-bxnYjOa6FPGMDieOqgKqCczYQiFBorfQlu0rpIIRGADFgu9WeTOSrHMnv8p43kdrO5i54HhyfvzRFpM67EC21fBq8jZSJT8gcE1-nzu-48Xz23eNH4oto2o585pMQUv4N59Ec6SvEt2t24cx7opt_H7L1fPY6fSyWz4un6cOysEqLXDhXokHjSleCEFvlFAIh1oSlFWMHUG6FJWVQI4G0onUopQJdt71WimDI7v56P2L4PFHKm0M4Rd9PbpTuD9F1VUr4AROdV9s</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ali, Kaveh</creator><creator>Seyed Mohammad Javadi</creator><creator>Moghani, Roya Mahdipour</creator><general>Periodica Polytechnica, Budapest University of Technology and Economics</general><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220101</creationdate><title>Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework</title><author>Ali, Kaveh ; Seyed Mohammad Javadi ; Moghani, Roya Mahdipour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-ff45a5af4f4300b2f253e559e54c08f334b0ce2a565e31c0df5112369d12372e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Codes of Practice</topic><topic>Decision trees</topic><topic>Empirical equations</topic><topic>Frameworks</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Predictions</topic><topic>Reinforced concrete</topic><topic>Shear strength</topic><topic>Stirrups</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Kaveh</creatorcontrib><creatorcontrib>Seyed Mohammad Javadi</creatorcontrib><creatorcontrib>Moghani, Roya Mahdipour</creatorcontrib><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Periodica polytechnica. Civil engineering. Bauingenieurwesen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Kaveh</au><au>Seyed Mohammad Javadi</au><au>Moghani, Roya Mahdipour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework</atitle><jtitle>Periodica polytechnica. Civil engineering. Bauingenieurwesen</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>66</volume><issue>1</issue><spage>18</spage><pages>18-</pages><issn>0553-6626</issn><eissn>1587-3773</eissn><abstract>Despite the importance and accuracy of empirical models, most of the existing models are only accurate on the collected experimental data. Adding new data, or even considering noise or variance in the data leads to loss of model accuracy. The objective of this paper is to alleviate overfitting and develop a more accurate and reliable alternative method using a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework for the prediction of the ultimate shear strength of FRP-reinforced concrete beams without stirrups. To enhance the robustness of the results, make full use of training samples (without the validation set), and alleviate the randomness in selecting test samples, the K-Fold Cross Validation method is employed. Using a dataset including 205 samples, results show that the extreme gradient boosting framework (XGBoost) providing better prediction. In fact, XGBoost results have higher precision and higher generalization in comparison with the empirical equations, the current design codes of practice, Least Absolute Shrinkage and Selection Operator model (LASSO), and Random Forest model (RF).</abstract><cop>Budapest</cop><pub>Periodica Polytechnica, Budapest University of Technology and Economics</pub><doi>10.3311/PPci.18901</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0553-6626
ispartof Periodica polytechnica. Civil engineering. Bauingenieurwesen, 2022-01, Vol.66 (1), p.18
issn 0553-6626
1587-3773
language eng
recordid cdi_proquest_journals_2615869741
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Codes of Practice
Decision trees
Empirical equations
Frameworks
Learning algorithms
Machine learning
Model accuracy
Predictions
Reinforced concrete
Shear strength
Stirrups
Training
title Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20Strength%20Prediction%20of%20FRP-reinforced%20Concrete%20Beams%20Using%20an%20Extreme%20Gradient%20Boosting%20Framework&rft.jtitle=Periodica%20polytechnica.%20Civil%20engineering.%20Bauingenieurwesen&rft.au=Ali,%20Kaveh&rft.date=2022-01-01&rft.volume=66&rft.issue=1&rft.spage=18&rft.pages=18-&rft.issn=0553-6626&rft.eissn=1587-3773&rft_id=info:doi/10.3311/PPci.18901&rft_dat=%3Cproquest%3E2615869741%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615869741&rft_id=info:pmid/&rfr_iscdi=true