Development of Code Completion System for Dockerfiles

Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Konpyuta Sofutowea 2021/10/22, Vol.38(4), pp.4_53-4_59
Hauptverfasser: Kaisei, HANAYAMA, Shinsuke, MATSUMOTO, Shinji, KUSUMOTO
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4_59
container_issue 4
container_start_page 4_53
container_title Konpyuta Sofutowea
container_volume 38
creator Kaisei, HANAYAMA
Shinsuke, MATSUMOTO
Shinji, KUSUMOTO
description Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by writing configuration scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply knowledge gained from conventional software development to infrastructure configuration. However, infrastructure as code is a relatively new technology, some domains of which have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the development of dfs. The proposed system applies machine learning with long short-term memory to a pre-collected dataset to create language models and uses model switching to overcome a Docker-specific code completion problem. Evaluation experiments show that the implemented code completion system, hb, has a high average recommendation accuracy of 88.9%.
doi_str_mv 10.11309/jssst.38.4_53
format Article
fullrecord <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_2615755946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615755946</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2356-7eeb6a89f2a12fab2f9f4cab3f1850145c93b778c2650b07a74c43e7a50a64443</originalsourceid><addsrcrecordid>eNo9UDtPxDAYywASp-NW5krMLXmn2UB3vKSTGIA5SsMXaGmbkuSQ7t9TUcRiD7Zs2QhdEFwRwrC-6lJKuWJ1xY1gJ2iFaa1LKTg-Q5uU2gZjrCURXK6Q2ME39GEaYMxF8MU2vMEMw9RDbsNYPB9ThqHwIRa74D4h-raHdI5Ove0TbP54jV7vbl-2D-X-6f5xe7MvO8qELBVAI22tPbWEettQrz13tmGe1AITLpxmjVK1o1LgBiuruOMMlBXYSs45W6PLJXeK4esAKZsuHOI4Vxo6D1BCaC5n1_Xi6lK272Cm2A42Ho2NuXU9mN87DKsNX0Cwf8l92Gg6y34ARbNeQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615755946</pqid></control><display><type>article</type><title>Development of Code Completion System for Dockerfiles</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Kaisei, HANAYAMA ; Shinsuke, MATSUMOTO ; Shinji, KUSUMOTO</creator><creatorcontrib>Kaisei, HANAYAMA ; Shinsuke, MATSUMOTO ; Shinji, KUSUMOTO</creatorcontrib><description>Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by writing configuration scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply knowledge gained from conventional software development to infrastructure configuration. However, infrastructure as code is a relatively new technology, some domains of which have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the development of dfs. The proposed system applies machine learning with long short-term memory to a pre-collected dataset to create language models and uses model switching to overcome a Docker-specific code completion problem. Evaluation experiments show that the implemented code completion system, hb, has a high average recommendation accuracy of 88.9%.</description><identifier>ISSN: 0289-6540</identifier><identifier>DOI: 10.11309/jssst.38.4_53</identifier><language>jpn</language><publisher>Tokyo: 日本ソフトウェア科学会</publisher><subject>Configurations ; Containers ; Infrastructure ; Machine learning ; New technology ; Resource utilization ; Software development</subject><ispartof>コンピュータ ソフトウェア, 2021/10/22, Vol.38(4), pp.4_53-4_59</ispartof><rights>2021, 日本ソフトウェア科学会</rights><rights>Copyright Japan Science and Technology Agency 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1885,27931,27932</link.rule.ids></links><search><creatorcontrib>Kaisei, HANAYAMA</creatorcontrib><creatorcontrib>Shinsuke, MATSUMOTO</creatorcontrib><creatorcontrib>Shinji, KUSUMOTO</creatorcontrib><title>Development of Code Completion System for Dockerfiles</title><title>Konpyuta Sofutowea</title><addtitle>コンピュータ ソフトウェア</addtitle><description>Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by writing configuration scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply knowledge gained from conventional software development to infrastructure configuration. However, infrastructure as code is a relatively new technology, some domains of which have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the development of dfs. The proposed system applies machine learning with long short-term memory to a pre-collected dataset to create language models and uses model switching to overcome a Docker-specific code completion problem. Evaluation experiments show that the implemented code completion system, hb, has a high average recommendation accuracy of 88.9%.</description><subject>Configurations</subject><subject>Containers</subject><subject>Infrastructure</subject><subject>Machine learning</subject><subject>New technology</subject><subject>Resource utilization</subject><subject>Software development</subject><issn>0289-6540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UDtPxDAYywASp-NW5krMLXmn2UB3vKSTGIA5SsMXaGmbkuSQ7t9TUcRiD7Zs2QhdEFwRwrC-6lJKuWJ1xY1gJ2iFaa1LKTg-Q5uU2gZjrCURXK6Q2ME39GEaYMxF8MU2vMEMw9RDbsNYPB9ThqHwIRa74D4h-raHdI5Ove0TbP54jV7vbl-2D-X-6f5xe7MvO8qELBVAI22tPbWEettQrz13tmGe1AITLpxmjVK1o1LgBiuruOMMlBXYSs45W6PLJXeK4esAKZsuHOI4Vxo6D1BCaC5n1_Xi6lK272Cm2A42Ho2NuXU9mN87DKsNX0Cwf8l92Gg6y34ARbNeQQ</recordid><startdate>20211022</startdate><enddate>20211022</enddate><creator>Kaisei, HANAYAMA</creator><creator>Shinsuke, MATSUMOTO</creator><creator>Shinji, KUSUMOTO</creator><general>日本ソフトウェア科学会</general><general>Japan Science and Technology Agency</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211022</creationdate><title>Development of Code Completion System for Dockerfiles</title><author>Kaisei, HANAYAMA ; Shinsuke, MATSUMOTO ; Shinji, KUSUMOTO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2356-7eeb6a89f2a12fab2f9f4cab3f1850145c93b778c2650b07a74c43e7a50a64443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2021</creationdate><topic>Configurations</topic><topic>Containers</topic><topic>Infrastructure</topic><topic>Machine learning</topic><topic>New technology</topic><topic>Resource utilization</topic><topic>Software development</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaisei, HANAYAMA</creatorcontrib><creatorcontrib>Shinsuke, MATSUMOTO</creatorcontrib><creatorcontrib>Shinji, KUSUMOTO</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Konpyuta Sofutowea</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaisei, HANAYAMA</au><au>Shinsuke, MATSUMOTO</au><au>Shinji, KUSUMOTO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Code Completion System for Dockerfiles</atitle><jtitle>Konpyuta Sofutowea</jtitle><addtitle>コンピュータ ソフトウェア</addtitle><date>2021-10-22</date><risdate>2021</risdate><volume>38</volume><issue>4</issue><spage>4_53</spage><epage>4_59</epage><pages>4_53-4_59</pages><issn>0289-6540</issn><abstract>Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by writing configuration scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply knowledge gained from conventional software development to infrastructure configuration. However, infrastructure as code is a relatively new technology, some domains of which have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the development of dfs. The proposed system applies machine learning with long short-term memory to a pre-collected dataset to create language models and uses model switching to overcome a Docker-specific code completion problem. Evaluation experiments show that the implemented code completion system, hb, has a high average recommendation accuracy of 88.9%.</abstract><cop>Tokyo</cop><pub>日本ソフトウェア科学会</pub><doi>10.11309/jssst.38.4_53</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0289-6540
ispartof コンピュータ ソフトウェア, 2021/10/22, Vol.38(4), pp.4_53-4_59
issn 0289-6540
language jpn
recordid cdi_proquest_journals_2615755946
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Configurations
Containers
Infrastructure
Machine learning
New technology
Resource utilization
Software development
title Development of Code Completion System for Dockerfiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Code%20Completion%20System%20for%20Dockerfiles&rft.jtitle=Konpyuta%20Sofutowea&rft.au=Kaisei,%20HANAYAMA&rft.date=2021-10-22&rft.volume=38&rft.issue=4&rft.spage=4_53&rft.epage=4_59&rft.pages=4_53-4_59&rft.issn=0289-6540&rft_id=info:doi/10.11309/jssst.38.4_53&rft_dat=%3Cproquest_jstag%3E2615755946%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615755946&rft_id=info:pmid/&rfr_iscdi=true