Development of Code Completion System for Dockerfiles
Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built...
Gespeichert in:
Veröffentlicht in: | Konpyuta Sofutowea 2021/10/22, Vol.38(4), pp.4_53-4_59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4_59 |
---|---|
container_issue | 4 |
container_start_page | 4_53 |
container_title | Konpyuta Sofutowea |
container_volume | 38 |
creator | Kaisei, HANAYAMA Shinsuke, MATSUMOTO Shinji, KUSUMOTO |
description | Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by writing configuration scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply knowledge gained from conventional software development to infrastructure configuration. However, infrastructure as code is a relatively new technology, some domains of which have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the development of dfs. The proposed system applies machine learning with long short-term memory to a pre-collected dataset to create language models and uses model switching to overcome a Docker-specific code completion problem. Evaluation experiments show that the implemented code completion system, hb, has a high average recommendation accuracy of 88.9%. |
doi_str_mv | 10.11309/jssst.38.4_53 |
format | Article |
fullrecord | <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_2615755946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615755946</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2356-7eeb6a89f2a12fab2f9f4cab3f1850145c93b778c2650b07a74c43e7a50a64443</originalsourceid><addsrcrecordid>eNo9UDtPxDAYywASp-NW5krMLXmn2UB3vKSTGIA5SsMXaGmbkuSQ7t9TUcRiD7Zs2QhdEFwRwrC-6lJKuWJ1xY1gJ2iFaa1LKTg-Q5uU2gZjrCURXK6Q2ME39GEaYMxF8MU2vMEMw9RDbsNYPB9ThqHwIRa74D4h-raHdI5Ove0TbP54jV7vbl-2D-X-6f5xe7MvO8qELBVAI22tPbWEettQrz13tmGe1AITLpxmjVK1o1LgBiuruOMMlBXYSs45W6PLJXeK4esAKZsuHOI4Vxo6D1BCaC5n1_Xi6lK272Cm2A42Ho2NuXU9mN87DKsNX0Cwf8l92Gg6y34ARbNeQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615755946</pqid></control><display><type>article</type><title>Development of Code Completion System for Dockerfiles</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Kaisei, HANAYAMA ; Shinsuke, MATSUMOTO ; Shinji, KUSUMOTO</creator><creatorcontrib>Kaisei, HANAYAMA ; Shinsuke, MATSUMOTO ; Shinji, KUSUMOTO</creatorcontrib><description>Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by writing configuration scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply knowledge gained from conventional software development to infrastructure configuration. However, infrastructure as code is a relatively new technology, some domains of which have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the development of dfs. The proposed system applies machine learning with long short-term memory to a pre-collected dataset to create language models and uses model switching to overcome a Docker-specific code completion problem. Evaluation experiments show that the implemented code completion system, hb, has a high average recommendation accuracy of 88.9%.</description><identifier>ISSN: 0289-6540</identifier><identifier>DOI: 10.11309/jssst.38.4_53</identifier><language>jpn</language><publisher>Tokyo: 日本ソフトウェア科学会</publisher><subject>Configurations ; Containers ; Infrastructure ; Machine learning ; New technology ; Resource utilization ; Software development</subject><ispartof>コンピュータ ソフトウェア, 2021/10/22, Vol.38(4), pp.4_53-4_59</ispartof><rights>2021, 日本ソフトウェア科学会</rights><rights>Copyright Japan Science and Technology Agency 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1885,27931,27932</link.rule.ids></links><search><creatorcontrib>Kaisei, HANAYAMA</creatorcontrib><creatorcontrib>Shinsuke, MATSUMOTO</creatorcontrib><creatorcontrib>Shinji, KUSUMOTO</creatorcontrib><title>Development of Code Completion System for Dockerfiles</title><title>Konpyuta Sofutowea</title><addtitle>コンピュータ ソフトウェア</addtitle><description>Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by writing configuration scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply knowledge gained from conventional software development to infrastructure configuration. However, infrastructure as code is a relatively new technology, some domains of which have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the development of dfs. The proposed system applies machine learning with long short-term memory to a pre-collected dataset to create language models and uses model switching to overcome a Docker-specific code completion problem. Evaluation experiments show that the implemented code completion system, hb, has a high average recommendation accuracy of 88.9%.</description><subject>Configurations</subject><subject>Containers</subject><subject>Infrastructure</subject><subject>Machine learning</subject><subject>New technology</subject><subject>Resource utilization</subject><subject>Software development</subject><issn>0289-6540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UDtPxDAYywASp-NW5krMLXmn2UB3vKSTGIA5SsMXaGmbkuSQ7t9TUcRiD7Zs2QhdEFwRwrC-6lJKuWJ1xY1gJ2iFaa1LKTg-Q5uU2gZjrCURXK6Q2ME39GEaYMxF8MU2vMEMw9RDbsNYPB9ThqHwIRa74D4h-raHdI5Ove0TbP54jV7vbl-2D-X-6f5xe7MvO8qELBVAI22tPbWEettQrz13tmGe1AITLpxmjVK1o1LgBiuruOMMlBXYSs45W6PLJXeK4esAKZsuHOI4Vxo6D1BCaC5n1_Xi6lK272Cm2A42Ho2NuXU9mN87DKsNX0Cwf8l92Gg6y34ARbNeQQ</recordid><startdate>20211022</startdate><enddate>20211022</enddate><creator>Kaisei, HANAYAMA</creator><creator>Shinsuke, MATSUMOTO</creator><creator>Shinji, KUSUMOTO</creator><general>日本ソフトウェア科学会</general><general>Japan Science and Technology Agency</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211022</creationdate><title>Development of Code Completion System for Dockerfiles</title><author>Kaisei, HANAYAMA ; Shinsuke, MATSUMOTO ; Shinji, KUSUMOTO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2356-7eeb6a89f2a12fab2f9f4cab3f1850145c93b778c2650b07a74c43e7a50a64443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2021</creationdate><topic>Configurations</topic><topic>Containers</topic><topic>Infrastructure</topic><topic>Machine learning</topic><topic>New technology</topic><topic>Resource utilization</topic><topic>Software development</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaisei, HANAYAMA</creatorcontrib><creatorcontrib>Shinsuke, MATSUMOTO</creatorcontrib><creatorcontrib>Shinji, KUSUMOTO</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Konpyuta Sofutowea</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaisei, HANAYAMA</au><au>Shinsuke, MATSUMOTO</au><au>Shinji, KUSUMOTO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Code Completion System for Dockerfiles</atitle><jtitle>Konpyuta Sofutowea</jtitle><addtitle>コンピュータ ソフトウェア</addtitle><date>2021-10-22</date><risdate>2021</risdate><volume>38</volume><issue>4</issue><spage>4_53</spage><epage>4_59</epage><pages>4_53-4_59</pages><issn>0289-6540</issn><abstract>Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is widely employed for cost reduction and effective resource utilization. The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by writing configuration scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply knowledge gained from conventional software development to infrastructure configuration. However, infrastructure as code is a relatively new technology, some domains of which have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the development of dfs. The proposed system applies machine learning with long short-term memory to a pre-collected dataset to create language models and uses model switching to overcome a Docker-specific code completion problem. Evaluation experiments show that the implemented code completion system, hb, has a high average recommendation accuracy of 88.9%.</abstract><cop>Tokyo</cop><pub>日本ソフトウェア科学会</pub><doi>10.11309/jssst.38.4_53</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0289-6540 |
ispartof | コンピュータ ソフトウェア, 2021/10/22, Vol.38(4), pp.4_53-4_59 |
issn | 0289-6540 |
language | jpn |
recordid | cdi_proquest_journals_2615755946 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | Configurations Containers Infrastructure Machine learning New technology Resource utilization Software development |
title | Development of Code Completion System for Dockerfiles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Code%20Completion%20System%20for%20Dockerfiles&rft.jtitle=Konpyuta%20Sofutowea&rft.au=Kaisei,%20HANAYAMA&rft.date=2021-10-22&rft.volume=38&rft.issue=4&rft.spage=4_53&rft.epage=4_59&rft.pages=4_53-4_59&rft.issn=0289-6540&rft_id=info:doi/10.11309/jssst.38.4_53&rft_dat=%3Cproquest_jstag%3E2615755946%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615755946&rft_id=info:pmid/&rfr_iscdi=true |