Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method

The filling mining method is important in realizing the green mining of mineral resources. Aiming at the problems of land resource occupation, environmental pollution, and rational utilization of coal-based solid wastes such as coal gangue, fly ash, and desulfurization gypsum, a new paste filling ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable materials 2022, Vol.10 (5), p.1439-1458
Hauptverfasser: Chang, Guanfeng, Hua, Xinzhu, Liu, Xiao, Li, Chen, Wang, Enqian, Sun, Bingjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1458
container_issue 5
container_start_page 1439
container_title Journal of renewable materials
container_volume 10
creator Chang, Guanfeng
Hua, Xinzhu
Liu, Xiao
Li, Chen
Wang, Enqian
Sun, Bingjun
description The filling mining method is important in realizing the green mining of mineral resources. Aiming at the problems of land resource occupation, environmental pollution, and rational utilization of coal-based solid wastes such as coal gangue, fly ash, and desulfurization gypsum, a new paste filling material was developed with coal gangue, fly ash, and desulfurization gypsum as raw materials. The microstructure of the raw materials was analyzed by XRD and SEM. Combined with the Box-Behnken experimental design, the effect of each component on the fluidity of the filling slurry was analyzed through the response surface analysis. The significance of each component on its bleeding and fluidity was determined, and the optimal ratio of the filling slurry was obtained. Experimental results show that the microcosmic morphology of coal gangue, desulfurization gypsum, and gasification slag presents an irregular block and rough particle surface; the microcosmic morphology of fly ash and bottom slag presents first out spherical or quasi spherical particles. Moreover, obvious sintering traces exist on the surface of the bottom slag. The main crystal mineral of coal gangue and fly ash is SiO2, the desulfurization gypsum is composed of Ca(SO4) (H2O) and Ca(CO3) crystal minerals, the gasification slag is composed of carbon and nitrogen compounds, and the main crystal mineral components in the bottom slag sample are SiO2 and AlxSiyOz compounds. The order of significance of each key factor on slurry fluidity is as follows: C (desulfurization gypsum) > D (gasification slag and bottom slag 1:1) > A (coal gangue) > B (fly ash). The order of the significance of each key factor on slurry bleeding is as follows: B (fly ash) > C (desulfurization gypsum) > D (gasification slag and bottom slag 1:1) > A (coal gangue). Considering the material preparation, field application, and other conditions, the mass percentage of each factor content of the new paste filling material is as follows: 49.5% coal gangue, 8.3% fly ash, 4.1% desulfurization gypsum, 6.2% gasification slag, and 6.2% bottom slag. Graphical Abstract Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method
doi_str_mv 10.32604/jrm.2022.018607
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615682222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615682222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2287-fb0e141c3cef1603f45605bfb88722ba76594f228d53f477de5a187414af2d73</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EElXpzmiJOcV2HDuMpSJQqVCp7W45jk0dpXGwE1D49biUgbfcSe_d6e4D4BajeUoYove1P84JImSOcM4QvwATghlNWErx5b_-GsxCqFFUjhBD6QR8Fs1gK9uPcNWaZtCtsu07LKTqnYeLVjZjsAHKtoJb2VsHN11vj_b71LfQGfimv2Bhm-Y0tWsG70f4KIOuYLT7g4ZbHTrXBg13gzdSafiq-4OrbsCVkU3Qs786Bfviab98Sdab59VysU4UITlPTIk0plilShsc7zU0YygrTZnnnJBScpY9UBOjVRY9ziudSZxziqk0pOLpFNyd13befQw69KJ2g49fBUEYzlhOomIKnVPKuxC8NqLz9ij9KDASv3xF5CtOfMWZb_oDvPduMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615682222</pqid></control><display><type>article</type><title>Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method</title><source>Tech Science Press</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Guanfeng ; Hua, Xinzhu ; Liu, Xiao ; Li, Chen ; Wang, Enqian ; Sun, Bingjun</creator><creatorcontrib>Chang, Guanfeng ; Hua, Xinzhu ; Liu, Xiao ; Li, Chen ; Wang, Enqian ; Sun, Bingjun</creatorcontrib><description>The filling mining method is important in realizing the green mining of mineral resources. Aiming at the problems of land resource occupation, environmental pollution, and rational utilization of coal-based solid wastes such as coal gangue, fly ash, and desulfurization gypsum, a new paste filling material was developed with coal gangue, fly ash, and desulfurization gypsum as raw materials. The microstructure of the raw materials was analyzed by XRD and SEM. Combined with the Box-Behnken experimental design, the effect of each component on the fluidity of the filling slurry was analyzed through the response surface analysis. The significance of each component on its bleeding and fluidity was determined, and the optimal ratio of the filling slurry was obtained. Experimental results show that the microcosmic morphology of coal gangue, desulfurization gypsum, and gasification slag presents an irregular block and rough particle surface; the microcosmic morphology of fly ash and bottom slag presents first out spherical or quasi spherical particles. Moreover, obvious sintering traces exist on the surface of the bottom slag. The main crystal mineral of coal gangue and fly ash is SiO2, the desulfurization gypsum is composed of Ca(SO4) (H2O) and Ca(CO3) crystal minerals, the gasification slag is composed of carbon and nitrogen compounds, and the main crystal mineral components in the bottom slag sample are SiO2 and AlxSiyOz compounds. The order of significance of each key factor on slurry fluidity is as follows: C (desulfurization gypsum) &gt; D (gasification slag and bottom slag 1:1) &gt; A (coal gangue) &gt; B (fly ash). The order of the significance of each key factor on slurry bleeding is as follows: B (fly ash) &gt; C (desulfurization gypsum) &gt; D (gasification slag and bottom slag 1:1) &gt; A (coal gangue). Considering the material preparation, field application, and other conditions, the mass percentage of each factor content of the new paste filling material is as follows: 49.5% coal gangue, 8.3% fly ash, 4.1% desulfurization gypsum, 6.2% gasification slag, and 6.2% bottom slag. Graphical Abstract Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method</description><identifier>ISSN: 2164-6341</identifier><identifier>ISSN: 2164-6325</identifier><identifier>EISSN: 2164-6341</identifier><identifier>DOI: 10.32604/jrm.2022.018607</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Bleeding ; Coal ; Crystals ; Design of experiments ; Desulfurization ; Desulfurizing ; Experimental design ; Factor analysis ; Fillers ; Fluidity ; Fly ash ; Gangue ; Gasification ; Gypsum ; Land pollution ; Mineral resources ; Minerals ; Morphology ; Nitrogen compounds ; Optimization ; Raw materials ; Response surface methodology ; Silicon dioxide ; Slag ; Slurries ; Solid wastes ; Surface analysis (chemical) ; Viscosity</subject><ispartof>Journal of renewable materials, 2022, Vol.10 (5), p.1439-1458</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2287-fb0e141c3cef1603f45605bfb88722ba76594f228d53f477de5a187414af2d73</citedby><cites>FETCH-LOGICAL-c2287-fb0e141c3cef1603f45605bfb88722ba76594f228d53f477de5a187414af2d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Guanfeng</creatorcontrib><creatorcontrib>Hua, Xinzhu</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Wang, Enqian</creatorcontrib><creatorcontrib>Sun, Bingjun</creatorcontrib><title>Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method</title><title>Journal of renewable materials</title><description>The filling mining method is important in realizing the green mining of mineral resources. Aiming at the problems of land resource occupation, environmental pollution, and rational utilization of coal-based solid wastes such as coal gangue, fly ash, and desulfurization gypsum, a new paste filling material was developed with coal gangue, fly ash, and desulfurization gypsum as raw materials. The microstructure of the raw materials was analyzed by XRD and SEM. Combined with the Box-Behnken experimental design, the effect of each component on the fluidity of the filling slurry was analyzed through the response surface analysis. The significance of each component on its bleeding and fluidity was determined, and the optimal ratio of the filling slurry was obtained. Experimental results show that the microcosmic morphology of coal gangue, desulfurization gypsum, and gasification slag presents an irregular block and rough particle surface; the microcosmic morphology of fly ash and bottom slag presents first out spherical or quasi spherical particles. Moreover, obvious sintering traces exist on the surface of the bottom slag. The main crystal mineral of coal gangue and fly ash is SiO2, the desulfurization gypsum is composed of Ca(SO4) (H2O) and Ca(CO3) crystal minerals, the gasification slag is composed of carbon and nitrogen compounds, and the main crystal mineral components in the bottom slag sample are SiO2 and AlxSiyOz compounds. The order of significance of each key factor on slurry fluidity is as follows: C (desulfurization gypsum) &gt; D (gasification slag and bottom slag 1:1) &gt; A (coal gangue) &gt; B (fly ash). The order of the significance of each key factor on slurry bleeding is as follows: B (fly ash) &gt; C (desulfurization gypsum) &gt; D (gasification slag and bottom slag 1:1) &gt; A (coal gangue). Considering the material preparation, field application, and other conditions, the mass percentage of each factor content of the new paste filling material is as follows: 49.5% coal gangue, 8.3% fly ash, 4.1% desulfurization gypsum, 6.2% gasification slag, and 6.2% bottom slag. Graphical Abstract Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method</description><subject>Bleeding</subject><subject>Coal</subject><subject>Crystals</subject><subject>Design of experiments</subject><subject>Desulfurization</subject><subject>Desulfurizing</subject><subject>Experimental design</subject><subject>Factor analysis</subject><subject>Fillers</subject><subject>Fluidity</subject><subject>Fly ash</subject><subject>Gangue</subject><subject>Gasification</subject><subject>Gypsum</subject><subject>Land pollution</subject><subject>Mineral resources</subject><subject>Minerals</subject><subject>Morphology</subject><subject>Nitrogen compounds</subject><subject>Optimization</subject><subject>Raw materials</subject><subject>Response surface methodology</subject><subject>Silicon dioxide</subject><subject>Slag</subject><subject>Slurries</subject><subject>Solid wastes</subject><subject>Surface analysis (chemical)</subject><subject>Viscosity</subject><issn>2164-6341</issn><issn>2164-6325</issn><issn>2164-6341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkDFPwzAQhS0EElXpzmiJOcV2HDuMpSJQqVCp7W45jk0dpXGwE1D49biUgbfcSe_d6e4D4BajeUoYove1P84JImSOcM4QvwATghlNWErx5b_-GsxCqFFUjhBD6QR8Fs1gK9uPcNWaZtCtsu07LKTqnYeLVjZjsAHKtoJb2VsHN11vj_b71LfQGfimv2Bhm-Y0tWsG70f4KIOuYLT7g4ZbHTrXBg13gzdSafiq-4OrbsCVkU3Qs786Bfviab98Sdab59VysU4UITlPTIk0plilShsc7zU0YygrTZnnnJBScpY9UBOjVRY9ziudSZxziqk0pOLpFNyd13befQw69KJ2g49fBUEYzlhOomIKnVPKuxC8NqLz9ij9KDASv3xF5CtOfMWZb_oDvPduMg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chang, Guanfeng</creator><creator>Hua, Xinzhu</creator><creator>Liu, Xiao</creator><creator>Li, Chen</creator><creator>Wang, Enqian</creator><creator>Sun, Bingjun</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope></search><sort><creationdate>2022</creationdate><title>Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method</title><author>Chang, Guanfeng ; Hua, Xinzhu ; Liu, Xiao ; Li, Chen ; Wang, Enqian ; Sun, Bingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2287-fb0e141c3cef1603f45605bfb88722ba76594f228d53f477de5a187414af2d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bleeding</topic><topic>Coal</topic><topic>Crystals</topic><topic>Design of experiments</topic><topic>Desulfurization</topic><topic>Desulfurizing</topic><topic>Experimental design</topic><topic>Factor analysis</topic><topic>Fillers</topic><topic>Fluidity</topic><topic>Fly ash</topic><topic>Gangue</topic><topic>Gasification</topic><topic>Gypsum</topic><topic>Land pollution</topic><topic>Mineral resources</topic><topic>Minerals</topic><topic>Morphology</topic><topic>Nitrogen compounds</topic><topic>Optimization</topic><topic>Raw materials</topic><topic>Response surface methodology</topic><topic>Silicon dioxide</topic><topic>Slag</topic><topic>Slurries</topic><topic>Solid wastes</topic><topic>Surface analysis (chemical)</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang, Guanfeng</creatorcontrib><creatorcontrib>Hua, Xinzhu</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Wang, Enqian</creatorcontrib><creatorcontrib>Sun, Bingjun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Journal of renewable materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Guanfeng</au><au>Hua, Xinzhu</au><au>Liu, Xiao</au><au>Li, Chen</au><au>Wang, Enqian</au><au>Sun, Bingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method</atitle><jtitle>Journal of renewable materials</jtitle><date>2022</date><risdate>2022</risdate><volume>10</volume><issue>5</issue><spage>1439</spage><epage>1458</epage><pages>1439-1458</pages><issn>2164-6341</issn><issn>2164-6325</issn><eissn>2164-6341</eissn><abstract>The filling mining method is important in realizing the green mining of mineral resources. Aiming at the problems of land resource occupation, environmental pollution, and rational utilization of coal-based solid wastes such as coal gangue, fly ash, and desulfurization gypsum, a new paste filling material was developed with coal gangue, fly ash, and desulfurization gypsum as raw materials. The microstructure of the raw materials was analyzed by XRD and SEM. Combined with the Box-Behnken experimental design, the effect of each component on the fluidity of the filling slurry was analyzed through the response surface analysis. The significance of each component on its bleeding and fluidity was determined, and the optimal ratio of the filling slurry was obtained. Experimental results show that the microcosmic morphology of coal gangue, desulfurization gypsum, and gasification slag presents an irregular block and rough particle surface; the microcosmic morphology of fly ash and bottom slag presents first out spherical or quasi spherical particles. Moreover, obvious sintering traces exist on the surface of the bottom slag. The main crystal mineral of coal gangue and fly ash is SiO2, the desulfurization gypsum is composed of Ca(SO4) (H2O) and Ca(CO3) crystal minerals, the gasification slag is composed of carbon and nitrogen compounds, and the main crystal mineral components in the bottom slag sample are SiO2 and AlxSiyOz compounds. The order of significance of each key factor on slurry fluidity is as follows: C (desulfurization gypsum) &gt; D (gasification slag and bottom slag 1:1) &gt; A (coal gangue) &gt; B (fly ash). The order of the significance of each key factor on slurry bleeding is as follows: B (fly ash) &gt; C (desulfurization gypsum) &gt; D (gasification slag and bottom slag 1:1) &gt; A (coal gangue). Considering the material preparation, field application, and other conditions, the mass percentage of each factor content of the new paste filling material is as follows: 49.5% coal gangue, 8.3% fly ash, 4.1% desulfurization gypsum, 6.2% gasification slag, and 6.2% bottom slag. Graphical Abstract Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/jrm.2022.018607</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2164-6341
ispartof Journal of renewable materials, 2022, Vol.10 (5), p.1439-1458
issn 2164-6341
2164-6325
2164-6341
language eng
recordid cdi_proquest_journals_2615682222
source Tech Science Press; EZB-FREE-00999 freely available EZB journals
subjects Bleeding
Coal
Crystals
Design of experiments
Desulfurization
Desulfurizing
Experimental design
Factor analysis
Fillers
Fluidity
Fly ash
Gangue
Gasification
Gypsum
Land pollution
Mineral resources
Minerals
Morphology
Nitrogen compounds
Optimization
Raw materials
Response surface methodology
Silicon dioxide
Slag
Slurries
Solid wastes
Surface analysis (chemical)
Viscosity
title Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluidity%20Influencing%20Factor%20Analysis%20and%20Ratio%20Optimization%20of%20New%20Filling%20Slurry%20Based%20on%20the%20Response%20Surface%20Method&rft.jtitle=Journal%20of%20renewable%20materials&rft.au=Chang,%20Guanfeng&rft.date=2022&rft.volume=10&rft.issue=5&rft.spage=1439&rft.epage=1458&rft.pages=1439-1458&rft.issn=2164-6341&rft.eissn=2164-6341&rft_id=info:doi/10.32604/jrm.2022.018607&rft_dat=%3Cproquest_cross%3E2615682222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615682222&rft_id=info:pmid/&rfr_iscdi=true