Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions
Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H 2 CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic mole...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2021-12, Vol.656, p.A148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A148 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 656 |
creator | Ramal-Olmedo, Juan C. Menor-Salván, César A. Fortenberry, Ryan C. |
description | Context.
Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H
2
CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood.
Aims.
We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H
2
CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs).
Methods.
The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes.
Results.
The most probable reactions that produce H
2
CO in cold astrophysical regions are:
1
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + O⋅(
3
P) in DMCs, ⋅
3
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + ⋅O(
3
P) in DCDMCs, and ⋅CH
3
+ ⋅O(
3
P) →
1
H
2
CO + ⋅H in region III, ⋅CH
3
+⋅O(
1
D) →
1
H
2
CO + ⋅H in region II, and
1
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + ⋅O(
3
P) in region I belonging to CELMPs.
Conclusions.
Quantum chemical calculations suggest that the principal carbonaceous precursors of H
2
CO in cold regions for the gas-phase are CH
2
(a
1
A
1
), and ⋅CH
2
(X
3
B
1
) combined with ⋅O
2
(
3
Σ
g
) and ⋅CH
3
(
2
A
”
) + ⋅O(
3
P) / O(
1
D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H
2
CO molecular formation. |
doi_str_mv | 10.1051/0004-6361/202141616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615615723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615615723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-18f499f80d921420fff76302c53be4dbba5f962a7855a1ac81fc5b289eeca3cd3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMQCMEEmPwC7hE4gKHsnw0aXtEEzCkoV3gHLlpsna0TUnaw_49qYYmWbJsPdvyQ-iekmdKBF0RQtJEcklXjDCaUknlBVrQlLOEZKm8RIszcY1uQjjEktGcL9DPp9E19E3oArbO4z2EZKghGNy51uipBT_3Oxgb12NncW-m0UN7araVqY-VwY8bzPB694SbHmvXVhjC6N1QH0OjI-vNPk6HW3RloQ3m7j8v0ffb69d6k2x37x_rl22iOWNjQnObFoXNSVXEXxix1maSE6YFL01alSUIW0gGWS4EUNA5tVqULC-M0cB1xZfo4bR38O53MmFUBzf5Pp5UTFIRI2M8UvxEae9C8MaqwTcd-KOiRM1W1exMzc7U2Sr_AzBBan4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615615723</pqid></control><display><type>article</type><title>Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Ramal-Olmedo, Juan C. ; Menor-Salván, César A. ; Fortenberry, Ryan C.</creator><creatorcontrib>Ramal-Olmedo, Juan C. ; Menor-Salván, César A. ; Fortenberry, Ryan C.</creatorcontrib><description>Context.
Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H
2
CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood.
Aims.
We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H
2
CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs).
Methods.
The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes.
Results.
The most probable reactions that produce H
2
CO in cold astrophysical regions are:
1
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + O⋅(
3
P) in DMCs, ⋅
3
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + ⋅O(
3
P) in DCDMCs, and ⋅CH
3
+ ⋅O(
3
P) →
1
H
2
CO + ⋅H in region III, ⋅CH
3
+⋅O(
1
D) →
1
H
2
CO + ⋅H in region II, and
1
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + ⋅O(
3
P) in region I belonging to CELMPs.
Conclusions.
Quantum chemical calculations suggest that the principal carbonaceous precursors of H
2
CO in cold regions for the gas-phase are CH
2
(a
1
A
1
), and ⋅CH
2
(X
3
B
1
) combined with ⋅O
2
(
3
Σ
g
) and ⋅CH
3
(
2
A
”
) + ⋅O(
3
P) / O(
1
D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H
2
CO molecular formation.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202141616</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Chemical evolution ; Cold ; Equilibrium conditions ; Formaldehyde ; Interstellar chemistry ; Interstellar gas ; Interstellar matter ; Literature reviews ; Local thermodynamic equilibrium ; Mathematical analysis ; Molecular clouds ; Organic chemistry ; Partitions (mathematics) ; Potential energy ; Precursors ; Protostars ; Quantum chemistry ; Quantum statistics ; Reagents ; Star formation ; Stellar envelopes ; Thermodynamics ; Zero point energy</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-12, Vol.656, p.A148</ispartof><rights>Copyright EDP Sciences Dec 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-18f499f80d921420fff76302c53be4dbba5f962a7855a1ac81fc5b289eeca3cd3</citedby><cites>FETCH-LOGICAL-c322t-18f499f80d921420fff76302c53be4dbba5f962a7855a1ac81fc5b289eeca3cd3</cites><orcidid>0000-0002-1412-3576 ; 0000-0002-1238-190X ; 0000-0003-4716-8225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramal-Olmedo, Juan C.</creatorcontrib><creatorcontrib>Menor-Salván, César A.</creatorcontrib><creatorcontrib>Fortenberry, Ryan C.</creatorcontrib><title>Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions</title><title>Astronomy and astrophysics (Berlin)</title><description>Context.
Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H
2
CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood.
Aims.
We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H
2
CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs).
Methods.
The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes.
Results.
The most probable reactions that produce H
2
CO in cold astrophysical regions are:
1
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + O⋅(
3
P) in DMCs, ⋅
3
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + ⋅O(
3
P) in DCDMCs, and ⋅CH
3
+ ⋅O(
3
P) →
1
H
2
CO + ⋅H in region III, ⋅CH
3
+⋅O(
1
D) →
1
H
2
CO + ⋅H in region II, and
1
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + ⋅O(
3
P) in region I belonging to CELMPs.
Conclusions.
Quantum chemical calculations suggest that the principal carbonaceous precursors of H
2
CO in cold regions for the gas-phase are CH
2
(a
1
A
1
), and ⋅CH
2
(X
3
B
1
) combined with ⋅O
2
(
3
Σ
g
) and ⋅CH
3
(
2
A
”
) + ⋅O(
3
P) / O(
1
D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H
2
CO molecular formation.</description><subject>Chemical evolution</subject><subject>Cold</subject><subject>Equilibrium conditions</subject><subject>Formaldehyde</subject><subject>Interstellar chemistry</subject><subject>Interstellar gas</subject><subject>Interstellar matter</subject><subject>Literature reviews</subject><subject>Local thermodynamic equilibrium</subject><subject>Mathematical analysis</subject><subject>Molecular clouds</subject><subject>Organic chemistry</subject><subject>Partitions (mathematics)</subject><subject>Potential energy</subject><subject>Precursors</subject><subject>Protostars</subject><subject>Quantum chemistry</subject><subject>Quantum statistics</subject><subject>Reagents</subject><subject>Star formation</subject><subject>Stellar envelopes</subject><subject>Thermodynamics</subject><subject>Zero point energy</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMQCMEEmPwC7hE4gKHsnw0aXtEEzCkoV3gHLlpsna0TUnaw_49qYYmWbJsPdvyQ-iekmdKBF0RQtJEcklXjDCaUknlBVrQlLOEZKm8RIszcY1uQjjEktGcL9DPp9E19E3oArbO4z2EZKghGNy51uipBT_3Oxgb12NncW-m0UN7araVqY-VwY8bzPB694SbHmvXVhjC6N1QH0OjI-vNPk6HW3RloQ3m7j8v0ffb69d6k2x37x_rl22iOWNjQnObFoXNSVXEXxix1maSE6YFL01alSUIW0gGWS4EUNA5tVqULC-M0cB1xZfo4bR38O53MmFUBzf5Pp5UTFIRI2M8UvxEae9C8MaqwTcd-KOiRM1W1exMzc7U2Sr_AzBBan4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ramal-Olmedo, Juan C.</creator><creator>Menor-Salván, César A.</creator><creator>Fortenberry, Ryan C.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1412-3576</orcidid><orcidid>https://orcid.org/0000-0002-1238-190X</orcidid><orcidid>https://orcid.org/0000-0003-4716-8225</orcidid></search><sort><creationdate>20211201</creationdate><title>Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions</title><author>Ramal-Olmedo, Juan C. ; Menor-Salván, César A. ; Fortenberry, Ryan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-18f499f80d921420fff76302c53be4dbba5f962a7855a1ac81fc5b289eeca3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical evolution</topic><topic>Cold</topic><topic>Equilibrium conditions</topic><topic>Formaldehyde</topic><topic>Interstellar chemistry</topic><topic>Interstellar gas</topic><topic>Interstellar matter</topic><topic>Literature reviews</topic><topic>Local thermodynamic equilibrium</topic><topic>Mathematical analysis</topic><topic>Molecular clouds</topic><topic>Organic chemistry</topic><topic>Partitions (mathematics)</topic><topic>Potential energy</topic><topic>Precursors</topic><topic>Protostars</topic><topic>Quantum chemistry</topic><topic>Quantum statistics</topic><topic>Reagents</topic><topic>Star formation</topic><topic>Stellar envelopes</topic><topic>Thermodynamics</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramal-Olmedo, Juan C.</creatorcontrib><creatorcontrib>Menor-Salván, César A.</creatorcontrib><creatorcontrib>Fortenberry, Ryan C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramal-Olmedo, Juan C.</au><au>Menor-Salván, César A.</au><au>Fortenberry, Ryan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>656</volume><spage>A148</spage><pages>A148-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context.
Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H
2
CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood.
Aims.
We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H
2
CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs).
Methods.
The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes.
Results.
The most probable reactions that produce H
2
CO in cold astrophysical regions are:
1
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + O⋅(
3
P) in DMCs, ⋅
3
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + ⋅O(
3
P) in DCDMCs, and ⋅CH
3
+ ⋅O(
3
P) →
1
H
2
CO + ⋅H in region III, ⋅CH
3
+⋅O(
1
D) →
1
H
2
CO + ⋅H in region II, and
1
CH
2
+ ⋅
3
O
2
→
1
H
2
CO + ⋅O(
3
P) in region I belonging to CELMPs.
Conclusions.
Quantum chemical calculations suggest that the principal carbonaceous precursors of H
2
CO in cold regions for the gas-phase are CH
2
(a
1
A
1
), and ⋅CH
2
(X
3
B
1
) combined with ⋅O
2
(
3
Σ
g
) and ⋅CH
3
(
2
A
”
) + ⋅O(
3
P) / O(
1
D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H
2
CO molecular formation.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202141616</doi><orcidid>https://orcid.org/0000-0002-1412-3576</orcidid><orcidid>https://orcid.org/0000-0002-1238-190X</orcidid><orcidid>https://orcid.org/0000-0003-4716-8225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2021-12, Vol.656, p.A148 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_journals_2615615723 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences |
subjects | Chemical evolution Cold Equilibrium conditions Formaldehyde Interstellar chemistry Interstellar gas Interstellar matter Literature reviews Local thermodynamic equilibrium Mathematical analysis Molecular clouds Organic chemistry Partitions (mathematics) Potential energy Precursors Protostars Quantum chemistry Quantum statistics Reagents Star formation Stellar envelopes Thermodynamics Zero point energy |
title | Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20for%20gas-phase%20molecular%20formation%20of%20neutral%20formaldehyde%20(H%202%20CO)%20in%20cold%20astrophysical%20regions&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Ramal-Olmedo,%20Juan%20C.&rft.date=2021-12-01&rft.volume=656&rft.spage=A148&rft.pages=A148-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202141616&rft_dat=%3Cproquest_cross%3E2615615723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615615723&rft_id=info:pmid/&rfr_iscdi=true |