Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions

Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H 2 CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-12, Vol.656, p.A148
Hauptverfasser: Ramal-Olmedo, Juan C., Menor-Salván, César A., Fortenberry, Ryan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A148
container_title Astronomy and astrophysics (Berlin)
container_volume 656
creator Ramal-Olmedo, Juan C.
Menor-Salván, César A.
Fortenberry, Ryan C.
description Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H 2 CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood. Aims. We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H 2 CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs). Methods. The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes. Results. The most probable reactions that produce H 2 CO in cold astrophysical regions are: 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + O⋅( 3 P) in DMCs, ⋅ 3 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in DCDMCs, and ⋅CH 3 + ⋅O( 3 P) → 1 H 2 CO + ⋅H in region III, ⋅CH 3 +⋅O( 1 D) → 1 H 2 CO + ⋅H in region II, and 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in region I belonging to CELMPs. Conclusions. Quantum chemical calculations suggest that the principal carbonaceous precursors of H 2 CO in cold regions for the gas-phase are CH 2 (a 1 A 1 ), and ⋅CH 2 (X 3 B 1 ) combined with ⋅O 2 ( 3 Σ g ) and ⋅CH 3 ( 2 A ” ) + ⋅O( 3 P) / O( 1 D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H 2 CO molecular formation.
doi_str_mv 10.1051/0004-6361/202141616
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615615723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615615723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-18f499f80d921420fff76302c53be4dbba5f962a7855a1ac81fc5b289eeca3cd3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMQCMEEmPwC7hE4gKHsnw0aXtEEzCkoV3gHLlpsna0TUnaw_49qYYmWbJsPdvyQ-iekmdKBF0RQtJEcklXjDCaUknlBVrQlLOEZKm8RIszcY1uQjjEktGcL9DPp9E19E3oArbO4z2EZKghGNy51uipBT_3Oxgb12NncW-m0UN7araVqY-VwY8bzPB694SbHmvXVhjC6N1QH0OjI-vNPk6HW3RloQ3m7j8v0ffb69d6k2x37x_rl22iOWNjQnObFoXNSVXEXxix1maSE6YFL01alSUIW0gGWS4EUNA5tVqULC-M0cB1xZfo4bR38O53MmFUBzf5Pp5UTFIRI2M8UvxEae9C8MaqwTcd-KOiRM1W1exMzc7U2Sr_AzBBan4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615615723</pqid></control><display><type>article</type><title>Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Ramal-Olmedo, Juan C. ; Menor-Salván, César A. ; Fortenberry, Ryan C.</creator><creatorcontrib>Ramal-Olmedo, Juan C. ; Menor-Salván, César A. ; Fortenberry, Ryan C.</creatorcontrib><description>Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H 2 CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood. Aims. We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H 2 CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs). Methods. The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes. Results. The most probable reactions that produce H 2 CO in cold astrophysical regions are: 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + O⋅( 3 P) in DMCs, ⋅ 3 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in DCDMCs, and ⋅CH 3 + ⋅O( 3 P) → 1 H 2 CO + ⋅H in region III, ⋅CH 3 +⋅O( 1 D) → 1 H 2 CO + ⋅H in region II, and 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in region I belonging to CELMPs. Conclusions. Quantum chemical calculations suggest that the principal carbonaceous precursors of H 2 CO in cold regions for the gas-phase are CH 2 (a 1 A 1 ), and ⋅CH 2 (X 3 B 1 ) combined with ⋅O 2 ( 3 Σ g ) and ⋅CH 3 ( 2 A ” ) + ⋅O( 3 P) / O( 1 D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H 2 CO molecular formation.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202141616</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Chemical evolution ; Cold ; Equilibrium conditions ; Formaldehyde ; Interstellar chemistry ; Interstellar gas ; Interstellar matter ; Literature reviews ; Local thermodynamic equilibrium ; Mathematical analysis ; Molecular clouds ; Organic chemistry ; Partitions (mathematics) ; Potential energy ; Precursors ; Protostars ; Quantum chemistry ; Quantum statistics ; Reagents ; Star formation ; Stellar envelopes ; Thermodynamics ; Zero point energy</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-12, Vol.656, p.A148</ispartof><rights>Copyright EDP Sciences Dec 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-18f499f80d921420fff76302c53be4dbba5f962a7855a1ac81fc5b289eeca3cd3</citedby><cites>FETCH-LOGICAL-c322t-18f499f80d921420fff76302c53be4dbba5f962a7855a1ac81fc5b289eeca3cd3</cites><orcidid>0000-0002-1412-3576 ; 0000-0002-1238-190X ; 0000-0003-4716-8225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramal-Olmedo, Juan C.</creatorcontrib><creatorcontrib>Menor-Salván, César A.</creatorcontrib><creatorcontrib>Fortenberry, Ryan C.</creatorcontrib><title>Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H 2 CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood. Aims. We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H 2 CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs). Methods. The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes. Results. The most probable reactions that produce H 2 CO in cold astrophysical regions are: 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + O⋅( 3 P) in DMCs, ⋅ 3 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in DCDMCs, and ⋅CH 3 + ⋅O( 3 P) → 1 H 2 CO + ⋅H in region III, ⋅CH 3 +⋅O( 1 D) → 1 H 2 CO + ⋅H in region II, and 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in region I belonging to CELMPs. Conclusions. Quantum chemical calculations suggest that the principal carbonaceous precursors of H 2 CO in cold regions for the gas-phase are CH 2 (a 1 A 1 ), and ⋅CH 2 (X 3 B 1 ) combined with ⋅O 2 ( 3 Σ g ) and ⋅CH 3 ( 2 A ” ) + ⋅O( 3 P) / O( 1 D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H 2 CO molecular formation.</description><subject>Chemical evolution</subject><subject>Cold</subject><subject>Equilibrium conditions</subject><subject>Formaldehyde</subject><subject>Interstellar chemistry</subject><subject>Interstellar gas</subject><subject>Interstellar matter</subject><subject>Literature reviews</subject><subject>Local thermodynamic equilibrium</subject><subject>Mathematical analysis</subject><subject>Molecular clouds</subject><subject>Organic chemistry</subject><subject>Partitions (mathematics)</subject><subject>Potential energy</subject><subject>Precursors</subject><subject>Protostars</subject><subject>Quantum chemistry</subject><subject>Quantum statistics</subject><subject>Reagents</subject><subject>Star formation</subject><subject>Stellar envelopes</subject><subject>Thermodynamics</subject><subject>Zero point energy</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMQCMEEmPwC7hE4gKHsnw0aXtEEzCkoV3gHLlpsna0TUnaw_49qYYmWbJsPdvyQ-iekmdKBF0RQtJEcklXjDCaUknlBVrQlLOEZKm8RIszcY1uQjjEktGcL9DPp9E19E3oArbO4z2EZKghGNy51uipBT_3Oxgb12NncW-m0UN7araVqY-VwY8bzPB694SbHmvXVhjC6N1QH0OjI-vNPk6HW3RloQ3m7j8v0ffb69d6k2x37x_rl22iOWNjQnObFoXNSVXEXxix1maSE6YFL01alSUIW0gGWS4EUNA5tVqULC-M0cB1xZfo4bR38O53MmFUBzf5Pp5UTFIRI2M8UvxEae9C8MaqwTcd-KOiRM1W1exMzc7U2Sr_AzBBan4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ramal-Olmedo, Juan C.</creator><creator>Menor-Salván, César A.</creator><creator>Fortenberry, Ryan C.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1412-3576</orcidid><orcidid>https://orcid.org/0000-0002-1238-190X</orcidid><orcidid>https://orcid.org/0000-0003-4716-8225</orcidid></search><sort><creationdate>20211201</creationdate><title>Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions</title><author>Ramal-Olmedo, Juan C. ; Menor-Salván, César A. ; Fortenberry, Ryan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-18f499f80d921420fff76302c53be4dbba5f962a7855a1ac81fc5b289eeca3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical evolution</topic><topic>Cold</topic><topic>Equilibrium conditions</topic><topic>Formaldehyde</topic><topic>Interstellar chemistry</topic><topic>Interstellar gas</topic><topic>Interstellar matter</topic><topic>Literature reviews</topic><topic>Local thermodynamic equilibrium</topic><topic>Mathematical analysis</topic><topic>Molecular clouds</topic><topic>Organic chemistry</topic><topic>Partitions (mathematics)</topic><topic>Potential energy</topic><topic>Precursors</topic><topic>Protostars</topic><topic>Quantum chemistry</topic><topic>Quantum statistics</topic><topic>Reagents</topic><topic>Star formation</topic><topic>Stellar envelopes</topic><topic>Thermodynamics</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramal-Olmedo, Juan C.</creatorcontrib><creatorcontrib>Menor-Salván, César A.</creatorcontrib><creatorcontrib>Fortenberry, Ryan C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramal-Olmedo, Juan C.</au><au>Menor-Salván, César A.</au><au>Fortenberry, Ryan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>656</volume><spage>A148</spage><pages>A148-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H 2 CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood. Aims. We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H 2 CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs). Methods. The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes. Results. The most probable reactions that produce H 2 CO in cold astrophysical regions are: 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + O⋅( 3 P) in DMCs, ⋅ 3 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in DCDMCs, and ⋅CH 3 + ⋅O( 3 P) → 1 H 2 CO + ⋅H in region III, ⋅CH 3 +⋅O( 1 D) → 1 H 2 CO + ⋅H in region II, and 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in region I belonging to CELMPs. Conclusions. Quantum chemical calculations suggest that the principal carbonaceous precursors of H 2 CO in cold regions for the gas-phase are CH 2 (a 1 A 1 ), and ⋅CH 2 (X 3 B 1 ) combined with ⋅O 2 ( 3 Σ g ) and ⋅CH 3 ( 2 A ” ) + ⋅O( 3 P) / O( 1 D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H 2 CO molecular formation.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202141616</doi><orcidid>https://orcid.org/0000-0002-1412-3576</orcidid><orcidid>https://orcid.org/0000-0002-1238-190X</orcidid><orcidid>https://orcid.org/0000-0003-4716-8225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2021-12, Vol.656, p.A148
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2615615723
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects Chemical evolution
Cold
Equilibrium conditions
Formaldehyde
Interstellar chemistry
Interstellar gas
Interstellar matter
Literature reviews
Local thermodynamic equilibrium
Mathematical analysis
Molecular clouds
Organic chemistry
Partitions (mathematics)
Potential energy
Precursors
Protostars
Quantum chemistry
Quantum statistics
Reagents
Star formation
Stellar envelopes
Thermodynamics
Zero point energy
title Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20for%20gas-phase%20molecular%20formation%20of%20neutral%20formaldehyde%20(H%202%20CO)%20in%20cold%20astrophysical%20regions&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Ramal-Olmedo,%20Juan%20C.&rft.date=2021-12-01&rft.volume=656&rft.spage=A148&rft.pages=A148-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202141616&rft_dat=%3Cproquest_cross%3E2615615723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615615723&rft_id=info:pmid/&rfr_iscdi=true