The first adiabatic exponent in a partially ionized prominence plasma: Effect on the period of slow waves

Partially ionized plasmas are found in many different astrophysical environments. The study of partially ionized plasmas is of great interest for solar physics because some layers of the solar atmosphere (photosphere and chromosphere) as well as solar structures, such as spicules and prominences, ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-12, Vol.656, p.A159
Hauptverfasser: Ballester, J. L., Soler, R., Carbonell, M., Terradas, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A159
container_title Astronomy and astrophysics (Berlin)
container_volume 656
creator Ballester, J. L.
Soler, R.
Carbonell, M.
Terradas, J.
description Partially ionized plasmas are found in many different astrophysical environments. The study of partially ionized plasmas is of great interest for solar physics because some layers of the solar atmosphere (photosphere and chromosphere) as well as solar structures, such as spicules and prominences, are made of these kinds of plasmas. To our knowledge, despite it being known that the adiabatic coefficient, γ , or the first adiabatic exponent, Γ 1 , depend on the ionization degree, this fact has been disregarded in all the studies related to magnetohydrodynamic waves in solar partially ionized plasmas. However, in other astrophysical areas, the dependence of γ or Γ 1 on the plasma ionization degree has been taken into account. Therefore, our aim here is to study how, in a plasma with prominence physical properties, the joint action of the temperature, density, and ionization degree modifies the numerical values of the first adiabatic exponent Γ 1 which affects the adiabatic sound speed and the period of slow waves. In our computations, we have used two different approaches; first of all, we assume local thermodynamic equilibrium (LTE) and, later, we consider a non-local thermodynamic equilibrium (non-LTE) model. When comparing the results in the LTE and non-LTE cases, the numerical values of Γ 1 are clearly different for both and they are probably strongly dependent on the assumed model which determines how the ionization degree evolves with temperature. Finally, the effect of the ionization degree dependence of Γ 1 on the period of slow waves has been determined showing that it can be of great importance for seismological studies of partially ionized solar structures.
doi_str_mv 10.1051/0004-6361/202141851
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615615606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615615606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-fa0e75b68cf0fd27d17a83df557c928b6ee860367332dc9ae672564ed7810b5a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKu_wEvA89p8bJKtNyn1Awpe6jlkkwmmbDdrklrrr3dLRRh4GXh4Z3gQuqXknhJBZ4SQupJc0hkjjNa0EfQMTWjNWUVULc_R5J-4RFc5b8aV0YZPUFh_APYh5YKNC6Y1JVgM30PsoS849NjgwaQSTNcdcIh9-AGHhxS3YQQs4KEzeWse8NJ7sAXHHpexcIAUosPR49zFPd6bL8jX6MKbLsPNX07R-9NyvXipVm_Pr4vHVWU5Y6XyhoASrWysJ94x5agyDXdeCGXnrGklQCMJl4pz5uzcgFRMyBqcaihpheFTdHfqHb_83EEuehN3qR9PaiapOA6RI8VPlE0x5wReDylsTTpoSvTRqT4a00dj-t8p_wV9yGmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615615606</pqid></control><display><type>article</type><title>The first adiabatic exponent in a partially ionized prominence plasma: Effect on the period of slow waves</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ballester, J. L. ; Soler, R. ; Carbonell, M. ; Terradas, J.</creator><creatorcontrib>Ballester, J. L. ; Soler, R. ; Carbonell, M. ; Terradas, J.</creatorcontrib><description>Partially ionized plasmas are found in many different astrophysical environments. The study of partially ionized plasmas is of great interest for solar physics because some layers of the solar atmosphere (photosphere and chromosphere) as well as solar structures, such as spicules and prominences, are made of these kinds of plasmas. To our knowledge, despite it being known that the adiabatic coefficient, γ , or the first adiabatic exponent, Γ 1 , depend on the ionization degree, this fact has been disregarded in all the studies related to magnetohydrodynamic waves in solar partially ionized plasmas. However, in other astrophysical areas, the dependence of γ or Γ 1 on the plasma ionization degree has been taken into account. Therefore, our aim here is to study how, in a plasma with prominence physical properties, the joint action of the temperature, density, and ionization degree modifies the numerical values of the first adiabatic exponent Γ 1 which affects the adiabatic sound speed and the period of slow waves. In our computations, we have used two different approaches; first of all, we assume local thermodynamic equilibrium (LTE) and, later, we consider a non-local thermodynamic equilibrium (non-LTE) model. When comparing the results in the LTE and non-LTE cases, the numerical values of Γ 1 are clearly different for both and they are probably strongly dependent on the assumed model which determines how the ionization degree evolves with temperature. Finally, the effect of the ionization degree dependence of Γ 1 on the period of slow waves has been determined showing that it can be of great importance for seismological studies of partially ionized solar structures.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202141851</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Adiabatic flow ; Chromosphere ; Fluid flow ; Ionization ; Ions ; Local thermodynamic equilibrium ; Magnetohydrodynamic waves ; Magnetohydrodynamics ; Mathematical models ; Photosphere ; Physical properties ; Plasmas (physics) ; Prominences ; Seismology ; Solar atmosphere ; Solar physics ; Spicules</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-12, Vol.656, p.A159</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-fa0e75b68cf0fd27d17a83df557c928b6ee860367332dc9ae672564ed7810b5a3</citedby><cites>FETCH-LOGICAL-c322t-fa0e75b68cf0fd27d17a83df557c928b6ee860367332dc9ae672564ed7810b5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3714,27901,27902</link.rule.ids></links><search><creatorcontrib>Ballester, J. L.</creatorcontrib><creatorcontrib>Soler, R.</creatorcontrib><creatorcontrib>Carbonell, M.</creatorcontrib><creatorcontrib>Terradas, J.</creatorcontrib><title>The first adiabatic exponent in a partially ionized prominence plasma: Effect on the period of slow waves</title><title>Astronomy and astrophysics (Berlin)</title><description>Partially ionized plasmas are found in many different astrophysical environments. The study of partially ionized plasmas is of great interest for solar physics because some layers of the solar atmosphere (photosphere and chromosphere) as well as solar structures, such as spicules and prominences, are made of these kinds of plasmas. To our knowledge, despite it being known that the adiabatic coefficient, γ , or the first adiabatic exponent, Γ 1 , depend on the ionization degree, this fact has been disregarded in all the studies related to magnetohydrodynamic waves in solar partially ionized plasmas. However, in other astrophysical areas, the dependence of γ or Γ 1 on the plasma ionization degree has been taken into account. Therefore, our aim here is to study how, in a plasma with prominence physical properties, the joint action of the temperature, density, and ionization degree modifies the numerical values of the first adiabatic exponent Γ 1 which affects the adiabatic sound speed and the period of slow waves. In our computations, we have used two different approaches; first of all, we assume local thermodynamic equilibrium (LTE) and, later, we consider a non-local thermodynamic equilibrium (non-LTE) model. When comparing the results in the LTE and non-LTE cases, the numerical values of Γ 1 are clearly different for both and they are probably strongly dependent on the assumed model which determines how the ionization degree evolves with temperature. Finally, the effect of the ionization degree dependence of Γ 1 on the period of slow waves has been determined showing that it can be of great importance for seismological studies of partially ionized solar structures.</description><subject>Adiabatic flow</subject><subject>Chromosphere</subject><subject>Fluid flow</subject><subject>Ionization</subject><subject>Ions</subject><subject>Local thermodynamic equilibrium</subject><subject>Magnetohydrodynamic waves</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Photosphere</subject><subject>Physical properties</subject><subject>Plasmas (physics)</subject><subject>Prominences</subject><subject>Seismology</subject><subject>Solar atmosphere</subject><subject>Solar physics</subject><subject>Spicules</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKu_wEvA89p8bJKtNyn1Awpe6jlkkwmmbDdrklrrr3dLRRh4GXh4Z3gQuqXknhJBZ4SQupJc0hkjjNa0EfQMTWjNWUVULc_R5J-4RFc5b8aV0YZPUFh_APYh5YKNC6Y1JVgM30PsoS849NjgwaQSTNcdcIh9-AGHhxS3YQQs4KEzeWse8NJ7sAXHHpexcIAUosPR49zFPd6bL8jX6MKbLsPNX07R-9NyvXipVm_Pr4vHVWU5Y6XyhoASrWysJ94x5agyDXdeCGXnrGklQCMJl4pz5uzcgFRMyBqcaihpheFTdHfqHb_83EEuehN3qR9PaiapOA6RI8VPlE0x5wReDylsTTpoSvTRqT4a00dj-t8p_wV9yGmo</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ballester, J. L.</creator><creator>Soler, R.</creator><creator>Carbonell, M.</creator><creator>Terradas, J.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211201</creationdate><title>The first adiabatic exponent in a partially ionized prominence plasma: Effect on the period of slow waves</title><author>Ballester, J. L. ; Soler, R. ; Carbonell, M. ; Terradas, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-fa0e75b68cf0fd27d17a83df557c928b6ee860367332dc9ae672564ed7810b5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adiabatic flow</topic><topic>Chromosphere</topic><topic>Fluid flow</topic><topic>Ionization</topic><topic>Ions</topic><topic>Local thermodynamic equilibrium</topic><topic>Magnetohydrodynamic waves</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Photosphere</topic><topic>Physical properties</topic><topic>Plasmas (physics)</topic><topic>Prominences</topic><topic>Seismology</topic><topic>Solar atmosphere</topic><topic>Solar physics</topic><topic>Spicules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballester, J. L.</creatorcontrib><creatorcontrib>Soler, R.</creatorcontrib><creatorcontrib>Carbonell, M.</creatorcontrib><creatorcontrib>Terradas, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballester, J. L.</au><au>Soler, R.</au><au>Carbonell, M.</au><au>Terradas, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The first adiabatic exponent in a partially ionized prominence plasma: Effect on the period of slow waves</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>656</volume><spage>A159</spage><pages>A159-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Partially ionized plasmas are found in many different astrophysical environments. The study of partially ionized plasmas is of great interest for solar physics because some layers of the solar atmosphere (photosphere and chromosphere) as well as solar structures, such as spicules and prominences, are made of these kinds of plasmas. To our knowledge, despite it being known that the adiabatic coefficient, γ , or the first adiabatic exponent, Γ 1 , depend on the ionization degree, this fact has been disregarded in all the studies related to magnetohydrodynamic waves in solar partially ionized plasmas. However, in other astrophysical areas, the dependence of γ or Γ 1 on the plasma ionization degree has been taken into account. Therefore, our aim here is to study how, in a plasma with prominence physical properties, the joint action of the temperature, density, and ionization degree modifies the numerical values of the first adiabatic exponent Γ 1 which affects the adiabatic sound speed and the period of slow waves. In our computations, we have used two different approaches; first of all, we assume local thermodynamic equilibrium (LTE) and, later, we consider a non-local thermodynamic equilibrium (non-LTE) model. When comparing the results in the LTE and non-LTE cases, the numerical values of Γ 1 are clearly different for both and they are probably strongly dependent on the assumed model which determines how the ionization degree evolves with temperature. Finally, the effect of the ionization degree dependence of Γ 1 on the period of slow waves has been determined showing that it can be of great importance for seismological studies of partially ionized solar structures.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202141851</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2021-12, Vol.656, p.A159
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2615615606
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Adiabatic flow
Chromosphere
Fluid flow
Ionization
Ions
Local thermodynamic equilibrium
Magnetohydrodynamic waves
Magnetohydrodynamics
Mathematical models
Photosphere
Physical properties
Plasmas (physics)
Prominences
Seismology
Solar atmosphere
Solar physics
Spicules
title The first adiabatic exponent in a partially ionized prominence plasma: Effect on the period of slow waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20first%20adiabatic%20exponent%20in%20a%20partially%20ionized%20prominence%20plasma:%20Effect%20on%20the%20period%20of%20slow%20waves&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Ballester,%20J.%20L.&rft.date=2021-12-01&rft.volume=656&rft.spage=A159&rft.pages=A159-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202141851&rft_dat=%3Cproquest_cross%3E2615615606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615615606&rft_id=info:pmid/&rfr_iscdi=true