Attention Mask-Based Network With Simple Color Annotation for UAV Vehicle Re-Identification
Vehicle re-identification (VeID) has attracted a growing research interest in recent years, and excellent performance has been shown with fixed traffic cameras. However, vehicle ReID in aerial images taken by unmanned aerial vehicles (UAVs), possessing both variable locations and special viewpoints,...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Yao, Aihuan Huang, Mengmeng Qi, Jiahao Zhong, Ping |
description | Vehicle re-identification (VeID) has attracted a growing research interest in recent years, and excellent performance has been shown with fixed traffic cameras. However, vehicle ReID in aerial images taken by unmanned aerial vehicles (UAVs), possessing both variable locations and special viewpoints, is still under-explored. Recent works tend to extract meaningful local features by careful annotation, which are effective but time-consuming. In order to extract discriminative features and avoid tedious annotating work, this letter develops an attention mask (AM)-based network with simple color annotation for object enhancement and background reduction. The network makes full use of deep features obtained by a pretrained color classification network and then utilizes principal component analysis (PCA) as a mapping function to achieve AMs without partial annotation. Besides, we introduce weighted triplet loss (WTL) function to deal with the problem of great similarity between classes caused by overlook views of UAVs. The loss function concentrates more on negative pairs to facilitate the identification ability of network. Rich experiments are conducted on both UAV dataset and surveillance dataset, and our method achieves competitive performance compared with recent ReID works. |
doi_str_mv | 10.1109/LGRS.2021.3092369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2615513305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9497319</ieee_id><sourcerecordid>2615513305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ae5afe913c6ed2e6d7027deb0023e89e25ecc7ca2e00db8ad1fb2074d4692b1a3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPhS8LkzP5q2eaxD52AqbG4KPoQ0ubJus5lJhvjf227Dp7uDz_fu-CB0TfCAECzuJqPpbEAxJQOGBWWpOEE9wnkeY56R065PeMxF_nGOLrxfYUyTPM966LMIAZpQ2yZ6Vn4d3ysPJnqB8GPdOnqvwzKa1V_bDURDu7EuKprGBrXnq3acF4toActat8AU4rHpdlW13hOX6KxSGw9Xx9pH88eHt-FTPHkdjYfFJNZUsBAr4KoCQZhOwVBITYZpZqBsf2SQC6ActM60ooCxKXNlSFVSnCUmSQUtiWJ9dHvYu3X2ewc-yJXduaY9KWnaSiCMYd5S5EBpZ713UMmtq7-U-5UEy86h7BzKzqE8OmwzN4dMDQD_vEhExohgf7uAbf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615513305</pqid></control><display><type>article</type><title>Attention Mask-Based Network With Simple Color Annotation for UAV Vehicle Re-Identification</title><source>IEEE Electronic Library (IEL)</source><creator>Yao, Aihuan ; Huang, Mengmeng ; Qi, Jiahao ; Zhong, Ping</creator><creatorcontrib>Yao, Aihuan ; Huang, Mengmeng ; Qi, Jiahao ; Zhong, Ping</creatorcontrib><description>Vehicle re-identification (VeID) has attracted a growing research interest in recent years, and excellent performance has been shown with fixed traffic cameras. However, vehicle ReID in aerial images taken by unmanned aerial vehicles (UAVs), possessing both variable locations and special viewpoints, is still under-explored. Recent works tend to extract meaningful local features by careful annotation, which are effective but time-consuming. In order to extract discriminative features and avoid tedious annotating work, this letter develops an attention mask (AM)-based network with simple color annotation for object enhancement and background reduction. The network makes full use of deep features obtained by a pretrained color classification network and then utilizes principal component analysis (PCA) as a mapping function to achieve AMs without partial annotation. Besides, we introduce weighted triplet loss (WTL) function to deal with the problem of great similarity between classes caused by overlook views of UAVs. The loss function concentrates more on negative pairs to facilitate the identification ability of network. Rich experiments are conducted on both UAV dataset and surveillance dataset, and our method achieves competitive performance compared with recent ReID works.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3092369</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Attention mask (AM) ; Bibliographic information ; Cameras ; Color ; Colour ; Datasets ; Feature extraction ; Identification ; Image color analysis ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Training ; unmanned aerial vehicle (UAV) vehicle re-identification (VeID) ; Unmanned aerial vehicles ; weighted triplet loss (WTL)</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ae5afe913c6ed2e6d7027deb0023e89e25ecc7ca2e00db8ad1fb2074d4692b1a3</citedby><cites>FETCH-LOGICAL-c293t-ae5afe913c6ed2e6d7027deb0023e89e25ecc7ca2e00db8ad1fb2074d4692b1a3</cites><orcidid>0000-0002-2560-8157 ; 0000-0002-1609-4406 ; 0000-0002-8686-3928 ; 0000-0002-0057-8748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9497319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9497319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yao, Aihuan</creatorcontrib><creatorcontrib>Huang, Mengmeng</creatorcontrib><creatorcontrib>Qi, Jiahao</creatorcontrib><creatorcontrib>Zhong, Ping</creatorcontrib><title>Attention Mask-Based Network With Simple Color Annotation for UAV Vehicle Re-Identification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Vehicle re-identification (VeID) has attracted a growing research interest in recent years, and excellent performance has been shown with fixed traffic cameras. However, vehicle ReID in aerial images taken by unmanned aerial vehicles (UAVs), possessing both variable locations and special viewpoints, is still under-explored. Recent works tend to extract meaningful local features by careful annotation, which are effective but time-consuming. In order to extract discriminative features and avoid tedious annotating work, this letter develops an attention mask (AM)-based network with simple color annotation for object enhancement and background reduction. The network makes full use of deep features obtained by a pretrained color classification network and then utilizes principal component analysis (PCA) as a mapping function to achieve AMs without partial annotation. Besides, we introduce weighted triplet loss (WTL) function to deal with the problem of great similarity between classes caused by overlook views of UAVs. The loss function concentrates more on negative pairs to facilitate the identification ability of network. Rich experiments are conducted on both UAV dataset and surveillance dataset, and our method achieves competitive performance compared with recent ReID works.</description><subject>Annotations</subject><subject>Attention mask (AM)</subject><subject>Bibliographic information</subject><subject>Cameras</subject><subject>Color</subject><subject>Colour</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Identification</subject><subject>Image color analysis</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Training</subject><subject>unmanned aerial vehicle (UAV) vehicle re-identification (VeID)</subject><subject>Unmanned aerial vehicles</subject><subject>weighted triplet loss (WTL)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_gPhS8LkzP5q2eaxD52AqbG4KPoQ0ubJus5lJhvjf227Dp7uDz_fu-CB0TfCAECzuJqPpbEAxJQOGBWWpOEE9wnkeY56R065PeMxF_nGOLrxfYUyTPM966LMIAZpQ2yZ6Vn4d3ysPJnqB8GPdOnqvwzKa1V_bDURDu7EuKprGBrXnq3acF4toActat8AU4rHpdlW13hOX6KxSGw9Xx9pH88eHt-FTPHkdjYfFJNZUsBAr4KoCQZhOwVBITYZpZqBsf2SQC6ActM60ooCxKXNlSFVSnCUmSQUtiWJ9dHvYu3X2ewc-yJXduaY9KWnaSiCMYd5S5EBpZ713UMmtq7-U-5UEy86h7BzKzqE8OmwzN4dMDQD_vEhExohgf7uAbf4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yao, Aihuan</creator><creator>Huang, Mengmeng</creator><creator>Qi, Jiahao</creator><creator>Zhong, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2560-8157</orcidid><orcidid>https://orcid.org/0000-0002-1609-4406</orcidid><orcidid>https://orcid.org/0000-0002-8686-3928</orcidid><orcidid>https://orcid.org/0000-0002-0057-8748</orcidid></search><sort><creationdate>2022</creationdate><title>Attention Mask-Based Network With Simple Color Annotation for UAV Vehicle Re-Identification</title><author>Yao, Aihuan ; Huang, Mengmeng ; Qi, Jiahao ; Zhong, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ae5afe913c6ed2e6d7027deb0023e89e25ecc7ca2e00db8ad1fb2074d4692b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Attention mask (AM)</topic><topic>Bibliographic information</topic><topic>Cameras</topic><topic>Color</topic><topic>Colour</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Identification</topic><topic>Image color analysis</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Training</topic><topic>unmanned aerial vehicle (UAV) vehicle re-identification (VeID)</topic><topic>Unmanned aerial vehicles</topic><topic>weighted triplet loss (WTL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Aihuan</creatorcontrib><creatorcontrib>Huang, Mengmeng</creatorcontrib><creatorcontrib>Qi, Jiahao</creatorcontrib><creatorcontrib>Zhong, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yao, Aihuan</au><au>Huang, Mengmeng</au><au>Qi, Jiahao</au><au>Zhong, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention Mask-Based Network With Simple Color Annotation for UAV Vehicle Re-Identification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Vehicle re-identification (VeID) has attracted a growing research interest in recent years, and excellent performance has been shown with fixed traffic cameras. However, vehicle ReID in aerial images taken by unmanned aerial vehicles (UAVs), possessing both variable locations and special viewpoints, is still under-explored. Recent works tend to extract meaningful local features by careful annotation, which are effective but time-consuming. In order to extract discriminative features and avoid tedious annotating work, this letter develops an attention mask (AM)-based network with simple color annotation for object enhancement and background reduction. The network makes full use of deep features obtained by a pretrained color classification network and then utilizes principal component analysis (PCA) as a mapping function to achieve AMs without partial annotation. Besides, we introduce weighted triplet loss (WTL) function to deal with the problem of great similarity between classes caused by overlook views of UAVs. The loss function concentrates more on negative pairs to facilitate the identification ability of network. Rich experiments are conducted on both UAV dataset and surveillance dataset, and our method achieves competitive performance compared with recent ReID works.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3092369</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2560-8157</orcidid><orcidid>https://orcid.org/0000-0002-1609-4406</orcidid><orcidid>https://orcid.org/0000-0002-8686-3928</orcidid><orcidid>https://orcid.org/0000-0002-0057-8748</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2615513305 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Attention mask (AM) Bibliographic information Cameras Color Colour Datasets Feature extraction Identification Image color analysis Principal component analysis principal component analysis (PCA) Principal components analysis Training unmanned aerial vehicle (UAV) vehicle re-identification (VeID) Unmanned aerial vehicles weighted triplet loss (WTL) |
title | Attention Mask-Based Network With Simple Color Annotation for UAV Vehicle Re-Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention%20Mask-Based%20Network%20With%20Simple%20Color%20Annotation%20for%20UAV%20Vehicle%20Re-Identification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yao,%20Aihuan&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3092369&rft_dat=%3Cproquest_RIE%3E2615513305%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615513305&rft_id=info:pmid/&rft_ieee_id=9497319&rfr_iscdi=true |