Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions
The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing...
Gespeichert in:
Veröffentlicht in: | Chinese journal of polymer science 2022, Vol.40 (1), p.29-37 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Chinese journal of polymer science |
container_volume | 40 |
creator | Xu, Li-Feng Xu, Zhan-Wen Lin, Jia-Ping Wang, Li-Quan |
description | The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance. |
doi_str_mv | 10.1007/s10118-021-2642-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615494897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615494897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fcd17e835f3a4d6342866d356a0a0776839f0db5ec0a48881b2c3d79ece41f9c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2A62i-JskspagVC62o65BmXtop7aQmGaH-eqeM4MrVg8u598FB6JqSW0qIukuUUKoxYRQzKRjWJ2hEBa-wZISfohFhpcRKquocXaS0IUQKVaoRepvvc7Nrvpt2VSzWIYevsM22ccUCog9xZ1sHxfJQvDQt5D5-7aB16yMdfDGzB4hQF1PIEMOma11uQpsu0Zm32wRXv3eMPh4f3idTPJs_PU_uZ9hxKjP2rqYKNC89t6KWXDAtZc1LaYklSknNK0_qZQmOWKG1pkvmeK0qcCCorxwfo5thdx_DZwcpm03oYtu_NEzSUlRCV6qn6EC5GFKK4M0-NjsbD4YSc3RnBnemd2eO7ozuO2zopJ5tVxD_lv8v_QBDF3Ip</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615494897</pqid></control><display><type>article</type><title>Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Li-Feng ; Xu, Zhan-Wen ; Lin, Jia-Ping ; Wang, Li-Quan</creator><creatorcontrib>Xu, Li-Feng ; Xu, Zhan-Wen ; Lin, Jia-Ping ; Wang, Li-Quan</creatorcontrib><description>The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.</description><identifier>ISSN: 0256-7679</identifier><identifier>EISSN: 1439-6203</identifier><identifier>DOI: 10.1007/s10118-021-2642-8</identifier><language>eng</language><publisher>Beijing: Chinese Chemical Society and Institute of Chemistry, CAS</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Heterojunctions ; Industrial Chemistry/Chemical Engineering ; Morphology ; Optimization ; Photovoltaic cells ; Polymer Sciences ; Polymers ; Quenching ; Research Article ; Solar cells</subject><ispartof>Chinese journal of polymer science, 2022, Vol.40 (1), p.29-37</ispartof><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2021</rights><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fcd17e835f3a4d6342866d356a0a0776839f0db5ec0a48881b2c3d79ece41f9c3</citedby><cites>FETCH-LOGICAL-c316t-fcd17e835f3a4d6342866d356a0a0776839f0db5ec0a48881b2c3d79ece41f9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10118-021-2642-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10118-021-2642-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Li-Feng</creatorcontrib><creatorcontrib>Xu, Zhan-Wen</creatorcontrib><creatorcontrib>Lin, Jia-Ping</creatorcontrib><creatorcontrib>Wang, Li-Quan</creatorcontrib><title>Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions</title><title>Chinese journal of polymer science</title><addtitle>Chin J Polym Sci</addtitle><description>The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Heterojunctions</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Quenching</subject><subject>Research Article</subject><subject>Solar cells</subject><issn>0256-7679</issn><issn>1439-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wN2A62i-JskspagVC62o65BmXtop7aQmGaH-eqeM4MrVg8u598FB6JqSW0qIukuUUKoxYRQzKRjWJ2hEBa-wZISfohFhpcRKquocXaS0IUQKVaoRepvvc7Nrvpt2VSzWIYevsM22ccUCog9xZ1sHxfJQvDQt5D5-7aB16yMdfDGzB4hQF1PIEMOma11uQpsu0Zm32wRXv3eMPh4f3idTPJs_PU_uZ9hxKjP2rqYKNC89t6KWXDAtZc1LaYklSknNK0_qZQmOWKG1pkvmeK0qcCCorxwfo5thdx_DZwcpm03oYtu_NEzSUlRCV6qn6EC5GFKK4M0-NjsbD4YSc3RnBnemd2eO7ozuO2zopJ5tVxD_lv8v_QBDF3Ip</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xu, Li-Feng</creator><creator>Xu, Zhan-Wen</creator><creator>Lin, Jia-Ping</creator><creator>Wang, Li-Quan</creator><general>Chinese Chemical Society and Institute of Chemistry, CAS</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions</title><author>Xu, Li-Feng ; Xu, Zhan-Wen ; Lin, Jia-Ping ; Wang, Li-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fcd17e835f3a4d6342866d356a0a0776839f0db5ec0a48881b2c3d79ece41f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Heterojunctions</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Quenching</topic><topic>Research Article</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Li-Feng</creatorcontrib><creatorcontrib>Xu, Zhan-Wen</creatorcontrib><creatorcontrib>Lin, Jia-Ping</creatorcontrib><creatorcontrib>Wang, Li-Quan</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Li-Feng</au><au>Xu, Zhan-Wen</au><au>Lin, Jia-Ping</au><au>Wang, Li-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions</atitle><jtitle>Chinese journal of polymer science</jtitle><stitle>Chin J Polym Sci</stitle><date>2022</date><risdate>2022</risdate><volume>40</volume><issue>1</issue><spage>29</spage><epage>37</epage><pages>29-37</pages><issn>0256-7679</issn><eissn>1439-6203</eissn><abstract>The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.</abstract><cop>Beijing</cop><pub>Chinese Chemical Society and Institute of Chemistry, CAS</pub><doi>10.1007/s10118-021-2642-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-7679 |
ispartof | Chinese journal of polymer science, 2022, Vol.40 (1), p.29-37 |
issn | 0256-7679 1439-6203 |
language | eng |
recordid | cdi_proquest_journals_2615494897 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Heterojunctions Industrial Chemistry/Chemical Engineering Morphology Optimization Photovoltaic cells Polymer Sciences Polymers Quenching Research Article Solar cells |
title | Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Photovoltaic%20Performance%20by%20Kinetic%20Quenching%20of%20Layered%20Heterojunctions&rft.jtitle=Chinese%20journal%20of%20polymer%20science&rft.au=Xu,%20Li-Feng&rft.date=2022&rft.volume=40&rft.issue=1&rft.spage=29&rft.epage=37&rft.pages=29-37&rft.issn=0256-7679&rft.eissn=1439-6203&rft_id=info:doi/10.1007/s10118-021-2642-8&rft_dat=%3Cproquest_cross%3E2615494897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615494897&rft_id=info:pmid/&rfr_iscdi=true |