Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions

The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of polymer science 2022, Vol.40 (1), p.29-37
Hauptverfasser: Xu, Li-Feng, Xu, Zhan-Wen, Lin, Jia-Ping, Wang, Li-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 29
container_title Chinese journal of polymer science
container_volume 40
creator Xu, Li-Feng
Xu, Zhan-Wen
Lin, Jia-Ping
Wang, Li-Quan
description The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.
doi_str_mv 10.1007/s10118-021-2642-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615494897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615494897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fcd17e835f3a4d6342866d356a0a0776839f0db5ec0a48881b2c3d79ece41f9c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2A62i-JskspagVC62o65BmXtop7aQmGaH-eqeM4MrVg8u598FB6JqSW0qIukuUUKoxYRQzKRjWJ2hEBa-wZISfohFhpcRKquocXaS0IUQKVaoRepvvc7Nrvpt2VSzWIYevsM22ccUCog9xZ1sHxfJQvDQt5D5-7aB16yMdfDGzB4hQF1PIEMOma11uQpsu0Zm32wRXv3eMPh4f3idTPJs_PU_uZ9hxKjP2rqYKNC89t6KWXDAtZc1LaYklSknNK0_qZQmOWKG1pkvmeK0qcCCorxwfo5thdx_DZwcpm03oYtu_NEzSUlRCV6qn6EC5GFKK4M0-NjsbD4YSc3RnBnemd2eO7ozuO2zopJ5tVxD_lv8v_QBDF3Ip</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615494897</pqid></control><display><type>article</type><title>Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Li-Feng ; Xu, Zhan-Wen ; Lin, Jia-Ping ; Wang, Li-Quan</creator><creatorcontrib>Xu, Li-Feng ; Xu, Zhan-Wen ; Lin, Jia-Ping ; Wang, Li-Quan</creatorcontrib><description>The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.</description><identifier>ISSN: 0256-7679</identifier><identifier>EISSN: 1439-6203</identifier><identifier>DOI: 10.1007/s10118-021-2642-8</identifier><language>eng</language><publisher>Beijing: Chinese Chemical Society and Institute of Chemistry, CAS</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Heterojunctions ; Industrial Chemistry/Chemical Engineering ; Morphology ; Optimization ; Photovoltaic cells ; Polymer Sciences ; Polymers ; Quenching ; Research Article ; Solar cells</subject><ispartof>Chinese journal of polymer science, 2022, Vol.40 (1), p.29-37</ispartof><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2021</rights><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fcd17e835f3a4d6342866d356a0a0776839f0db5ec0a48881b2c3d79ece41f9c3</citedby><cites>FETCH-LOGICAL-c316t-fcd17e835f3a4d6342866d356a0a0776839f0db5ec0a48881b2c3d79ece41f9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10118-021-2642-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10118-021-2642-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Li-Feng</creatorcontrib><creatorcontrib>Xu, Zhan-Wen</creatorcontrib><creatorcontrib>Lin, Jia-Ping</creatorcontrib><creatorcontrib>Wang, Li-Quan</creatorcontrib><title>Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions</title><title>Chinese journal of polymer science</title><addtitle>Chin J Polym Sci</addtitle><description>The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Heterojunctions</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Quenching</subject><subject>Research Article</subject><subject>Solar cells</subject><issn>0256-7679</issn><issn>1439-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wN2A62i-JskspagVC62o65BmXtop7aQmGaH-eqeM4MrVg8u598FB6JqSW0qIukuUUKoxYRQzKRjWJ2hEBa-wZISfohFhpcRKquocXaS0IUQKVaoRepvvc7Nrvpt2VSzWIYevsM22ccUCog9xZ1sHxfJQvDQt5D5-7aB16yMdfDGzB4hQF1PIEMOma11uQpsu0Zm32wRXv3eMPh4f3idTPJs_PU_uZ9hxKjP2rqYKNC89t6KWXDAtZc1LaYklSknNK0_qZQmOWKG1pkvmeK0qcCCorxwfo5thdx_DZwcpm03oYtu_NEzSUlRCV6qn6EC5GFKK4M0-NjsbD4YSc3RnBnemd2eO7ozuO2zopJ5tVxD_lv8v_QBDF3Ip</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xu, Li-Feng</creator><creator>Xu, Zhan-Wen</creator><creator>Lin, Jia-Ping</creator><creator>Wang, Li-Quan</creator><general>Chinese Chemical Society and Institute of Chemistry, CAS</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions</title><author>Xu, Li-Feng ; Xu, Zhan-Wen ; Lin, Jia-Ping ; Wang, Li-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fcd17e835f3a4d6342866d356a0a0776839f0db5ec0a48881b2c3d79ece41f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Heterojunctions</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Quenching</topic><topic>Research Article</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Li-Feng</creatorcontrib><creatorcontrib>Xu, Zhan-Wen</creatorcontrib><creatorcontrib>Lin, Jia-Ping</creatorcontrib><creatorcontrib>Wang, Li-Quan</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Li-Feng</au><au>Xu, Zhan-Wen</au><au>Lin, Jia-Ping</au><au>Wang, Li-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions</atitle><jtitle>Chinese journal of polymer science</jtitle><stitle>Chin J Polym Sci</stitle><date>2022</date><risdate>2022</risdate><volume>40</volume><issue>1</issue><spage>29</spage><epage>37</epage><pages>29-37</pages><issn>0256-7679</issn><eissn>1439-6203</eissn><abstract>The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.</abstract><cop>Beijing</cop><pub>Chinese Chemical Society and Institute of Chemistry, CAS</pub><doi>10.1007/s10118-021-2642-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-7679
ispartof Chinese journal of polymer science, 2022, Vol.40 (1), p.29-37
issn 0256-7679
1439-6203
language eng
recordid cdi_proquest_journals_2615494897
source SpringerNature Journals; Alma/SFX Local Collection
subjects Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Heterojunctions
Industrial Chemistry/Chemical Engineering
Morphology
Optimization
Photovoltaic cells
Polymer Sciences
Polymers
Quenching
Research Article
Solar cells
title Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Photovoltaic%20Performance%20by%20Kinetic%20Quenching%20of%20Layered%20Heterojunctions&rft.jtitle=Chinese%20journal%20of%20polymer%20science&rft.au=Xu,%20Li-Feng&rft.date=2022&rft.volume=40&rft.issue=1&rft.spage=29&rft.epage=37&rft.pages=29-37&rft.issn=0256-7679&rft.eissn=1439-6203&rft_id=info:doi/10.1007/s10118-021-2642-8&rft_dat=%3Cproquest_cross%3E2615494897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615494897&rft_id=info:pmid/&rfr_iscdi=true