Predictive text analysis using eye blinks

The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM), which automaticall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2021-12, Vol.96, p.107554, Article 107554
Hauptverfasser: Chaudhary, Gopal, Lamba, Puneet Singh, Jolly, Harman Singh, Poply, Sakaar, Khari, Manju, Verdú, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107554
container_title Computers & electrical engineering
container_volume 96
creator Chaudhary, Gopal
Lamba, Puneet Singh
Jolly, Harman Singh
Poply, Sakaar
Khari, Manju
Verdú, Elena
description The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM), which automatically identifies eye blinks in real-time to predict a lexicon. The system implements an auxiliary input that enables individuals to interact with others with the help of a device, where voluntary long blinks help in transition from a counter to a predictive table, while the short blinks are used to make the counter stop and select the lexicon. The system does not require prior manual initialization, special lighting, or previous face detection as it can calibrate it if the user is in the camera region and close. The proposed user interface makes the process of words detection by blinking easier with 74% accuracy. [Display omitted]
doi_str_mv 10.1016/j.compeleceng.2021.107554
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615431200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790621004985</els_id><sourcerecordid>2615431200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-fa547347f4452a00316a2a25775f9c1e4cdb4fec5491382637b54657a93a99893</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH4I4cUjw2_ERRbykSnCAs-W6m8ohTYqdVOTf4yocOHJazWpntPMhdE1wQTCRd03h-t0eWnDQbQuKKUl7JQQ_QQtSKp0fxSlaYMxFrjSW5-gixgYnLUm5QLdvATbeDf4A2QDfQ2Y7207Rx2yMvttmMEG2bn33GS_RWW3bCFe_c4k-Hh_eq-d89fr0Ut2vcse4HvLaCq4YVzXnglqMGZGWWiqUErV2BLjbrHkNTnBNWEklU2vBpVBWM6t1qdkS3cy5-9B_jRAH0_RjSF9FQyURnBGaUpdIz1cu9DEGqM0--J0NkyHYHMmYxvwhY45kzEwmeavZC6nGwUMw0XnoXAIRwA1m0_t_pPwAgqRwBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615431200</pqid></control><display><type>article</type><title>Predictive text analysis using eye blinks</title><source>Elsevier ScienceDirect Journals</source><creator>Chaudhary, Gopal ; Lamba, Puneet Singh ; Jolly, Harman Singh ; Poply, Sakaar ; Khari, Manju ; Verdú, Elena</creator><creatorcontrib>Chaudhary, Gopal ; Lamba, Puneet Singh ; Jolly, Harman Singh ; Poply, Sakaar ; Khari, Manju ; Verdú, Elena</creatorcontrib><description>The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM), which automatically identifies eye blinks in real-time to predict a lexicon. The system implements an auxiliary input that enables individuals to interact with others with the help of a device, where voluntary long blinks help in transition from a counter to a predictive table, while the short blinks are used to make the counter stop and select the lexicon. The system does not require prior manual initialization, special lighting, or previous face detection as it can calibrate it if the user is in the camera region and close. The proposed user interface makes the process of words detection by blinking easier with 74% accuracy. [Display omitted]</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2021.107554</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Blinking ; Convolutional neural networks ; Eye blinking ; Eye facet correlation ; Eye facet ratio ; Eye gaze ; Eye movements ; Face recognition ; Histogram of oriented gradients ; Histograms ; Support Vector Machines</subject><ispartof>Computers &amp; electrical engineering, 2021-12, Vol.96, p.107554, Article 107554</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-fa547347f4452a00316a2a25775f9c1e4cdb4fec5491382637b54657a93a99893</citedby><cites>FETCH-LOGICAL-c349t-fa547347f4452a00316a2a25775f9c1e4cdb4fec5491382637b54657a93a99893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045790621004985$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chaudhary, Gopal</creatorcontrib><creatorcontrib>Lamba, Puneet Singh</creatorcontrib><creatorcontrib>Jolly, Harman Singh</creatorcontrib><creatorcontrib>Poply, Sakaar</creatorcontrib><creatorcontrib>Khari, Manju</creatorcontrib><creatorcontrib>Verdú, Elena</creatorcontrib><title>Predictive text analysis using eye blinks</title><title>Computers &amp; electrical engineering</title><description>The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM), which automatically identifies eye blinks in real-time to predict a lexicon. The system implements an auxiliary input that enables individuals to interact with others with the help of a device, where voluntary long blinks help in transition from a counter to a predictive table, while the short blinks are used to make the counter stop and select the lexicon. The system does not require prior manual initialization, special lighting, or previous face detection as it can calibrate it if the user is in the camera region and close. The proposed user interface makes the process of words detection by blinking easier with 74% accuracy. [Display omitted]</description><subject>Blinking</subject><subject>Convolutional neural networks</subject><subject>Eye blinking</subject><subject>Eye facet correlation</subject><subject>Eye facet ratio</subject><subject>Eye gaze</subject><subject>Eye movements</subject><subject>Face recognition</subject><subject>Histogram of oriented gradients</subject><subject>Histograms</subject><subject>Support Vector Machines</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH4I4cUjw2_ERRbykSnCAs-W6m8ohTYqdVOTf4yocOHJazWpntPMhdE1wQTCRd03h-t0eWnDQbQuKKUl7JQQ_QQtSKp0fxSlaYMxFrjSW5-gixgYnLUm5QLdvATbeDf4A2QDfQ2Y7207Rx2yMvttmMEG2bn33GS_RWW3bCFe_c4k-Hh_eq-d89fr0Ut2vcse4HvLaCq4YVzXnglqMGZGWWiqUErV2BLjbrHkNTnBNWEklU2vBpVBWM6t1qdkS3cy5-9B_jRAH0_RjSF9FQyURnBGaUpdIz1cu9DEGqM0--J0NkyHYHMmYxvwhY45kzEwmeavZC6nGwUMw0XnoXAIRwA1m0_t_pPwAgqRwBw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Chaudhary, Gopal</creator><creator>Lamba, Puneet Singh</creator><creator>Jolly, Harman Singh</creator><creator>Poply, Sakaar</creator><creator>Khari, Manju</creator><creator>Verdú, Elena</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202112</creationdate><title>Predictive text analysis using eye blinks</title><author>Chaudhary, Gopal ; Lamba, Puneet Singh ; Jolly, Harman Singh ; Poply, Sakaar ; Khari, Manju ; Verdú, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-fa547347f4452a00316a2a25775f9c1e4cdb4fec5491382637b54657a93a99893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blinking</topic><topic>Convolutional neural networks</topic><topic>Eye blinking</topic><topic>Eye facet correlation</topic><topic>Eye facet ratio</topic><topic>Eye gaze</topic><topic>Eye movements</topic><topic>Face recognition</topic><topic>Histogram of oriented gradients</topic><topic>Histograms</topic><topic>Support Vector Machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhary, Gopal</creatorcontrib><creatorcontrib>Lamba, Puneet Singh</creatorcontrib><creatorcontrib>Jolly, Harman Singh</creatorcontrib><creatorcontrib>Poply, Sakaar</creatorcontrib><creatorcontrib>Khari, Manju</creatorcontrib><creatorcontrib>Verdú, Elena</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhary, Gopal</au><au>Lamba, Puneet Singh</au><au>Jolly, Harman Singh</au><au>Poply, Sakaar</au><au>Khari, Manju</au><au>Verdú, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive text analysis using eye blinks</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2021-12</date><risdate>2021</risdate><volume>96</volume><spage>107554</spage><pages>107554-</pages><artnum>107554</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM), which automatically identifies eye blinks in real-time to predict a lexicon. The system implements an auxiliary input that enables individuals to interact with others with the help of a device, where voluntary long blinks help in transition from a counter to a predictive table, while the short blinks are used to make the counter stop and select the lexicon. The system does not require prior manual initialization, special lighting, or previous face detection as it can calibrate it if the user is in the camera region and close. The proposed user interface makes the process of words detection by blinking easier with 74% accuracy. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2021.107554</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2021-12, Vol.96, p.107554, Article 107554
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2615431200
source Elsevier ScienceDirect Journals
subjects Blinking
Convolutional neural networks
Eye blinking
Eye facet correlation
Eye facet ratio
Eye gaze
Eye movements
Face recognition
Histogram of oriented gradients
Histograms
Support Vector Machines
title Predictive text analysis using eye blinks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20text%20analysis%20using%20eye%20blinks&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Chaudhary,%20Gopal&rft.date=2021-12&rft.volume=96&rft.spage=107554&rft.pages=107554-&rft.artnum=107554&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2021.107554&rft_dat=%3Cproquest_cross%3E2615431200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615431200&rft_id=info:pmid/&rft_els_id=S0045790621004985&rfr_iscdi=true