Data collection design for calibration of crop models using practical identifiability analysis

•Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2021-11, Vol.190, p.106457, Article 106457
Hauptverfasser: Coudron, Willem, Gobin, Anne, Boeckaert, Charlotte, De Cuypere, Tim, Lootens, Peter, Pollet, Sabien, Verheyen, Kris, De Frenne, Pieter, De Swaef, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106457
container_title Computers and electronics in agriculture
container_volume 190
creator Coudron, Willem
Gobin, Anne
Boeckaert, Charlotte
De Cuypere, Tim
Lootens, Peter
Pollet, Sabien
Verheyen, Kris
De Frenne, Pieter
De Swaef, Tom
description •Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop observations every two weeks are advised. The collection of high-quality calibration data is essential for the estimation of parameter values and reliability of crop models. However, few tools are available to quantify the minimum number of observations needed for parameter estimation. We therefore here applied practical identifiability analysis, based on global sensitivity analysis, to design measurement campaigns on farmers’ fields. We applied the method for parameterization of the AquaCrop model for mid-early potatoes in Belgium. We generated several virtual observational datasets, considering multiple weather and soil conditions, and measurement frequencies and variables. This analysis resulted in experimental designs where measurement campaigns should be conducted over at least two growing seasons and in different soil types, using soil moisture sensors combined with field observations every two weeks. This method showed to be a useful planning tool for the collection of sufficient data for the calibration of process-based crop models.
doi_str_mv 10.1016/j.compag.2021.106457
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615426932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169921004749</els_id><sourcerecordid>2615426932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-73a519c1d8c6d4b69fa9617d8cbf2433883641f888876f1b3ef3d9adb7d894d73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz12bppuPiyDrJyx40ashzccypdvUpBX235u1ns0lzPC8w8yD0DUpV6Qk7LZdmbAf9G5VlRXJLVav-QlaEMGrgpOSn6JFxkRBmJTn6CKltsy1FHyBPh_0qLEJXefMCKHH1iXY9diHiI3uoIn6tx08NjEMeB-s6xKeEvQ7PESdQxnDYF0_ggfdQAfjAeted4cE6RKded0ld_X3L9HH0-P75qXYvj2_bu63haGiHAtO9ZpIQ6wwzNYNk15LRnguG1_VlApBWU28yI8zTxrqPLVS2yYjsracLtHNPHeI4WtyaVRtmGJeIqmKkXVdMUmrTNUzlU9JKTqvhgh7HQ-KlOpoUrVqNqmOJtVsMsfu5li-3H2DiyoZcL1xFmK2pmyA_wf8AMCbf0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615426932</pqid></control><display><type>article</type><title>Data collection design for calibration of crop models using practical identifiability analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Coudron, Willem ; Gobin, Anne ; Boeckaert, Charlotte ; De Cuypere, Tim ; Lootens, Peter ; Pollet, Sabien ; Verheyen, Kris ; De Frenne, Pieter ; De Swaef, Tom</creator><creatorcontrib>Coudron, Willem ; Gobin, Anne ; Boeckaert, Charlotte ; De Cuypere, Tim ; Lootens, Peter ; Pollet, Sabien ; Verheyen, Kris ; De Frenne, Pieter ; De Swaef, Tom</creatorcontrib><description>•Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop observations every two weeks are advised. The collection of high-quality calibration data is essential for the estimation of parameter values and reliability of crop models. However, few tools are available to quantify the minimum number of observations needed for parameter estimation. We therefore here applied practical identifiability analysis, based on global sensitivity analysis, to design measurement campaigns on farmers’ fields. We applied the method for parameterization of the AquaCrop model for mid-early potatoes in Belgium. We generated several virtual observational datasets, considering multiple weather and soil conditions, and measurement frequencies and variables. This analysis resulted in experimental designs where measurement campaigns should be conducted over at least two growing seasons and in different soil types, using soil moisture sensors combined with field observations every two weeks. This method showed to be a useful planning tool for the collection of sufficient data for the calibration of process-based crop models.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2021.106457</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AquaCrop ; Calibration ; Data collection ; Farmers’ fields ; Identifiability analysis ; Mathematical models ; Model calibration ; Parameter estimation ; Parameter identification ; Parameterization ; Sensitivity analysis ; Soil conditions ; Soil moisture</subject><ispartof>Computers and electronics in agriculture, 2021-11, Vol.190, p.106457, Article 106457</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-73a519c1d8c6d4b69fa9617d8cbf2433883641f888876f1b3ef3d9adb7d894d73</citedby><cites>FETCH-LOGICAL-c380t-73a519c1d8c6d4b69fa9617d8cbf2433883641f888876f1b3ef3d9adb7d894d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168169921004749$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Coudron, Willem</creatorcontrib><creatorcontrib>Gobin, Anne</creatorcontrib><creatorcontrib>Boeckaert, Charlotte</creatorcontrib><creatorcontrib>De Cuypere, Tim</creatorcontrib><creatorcontrib>Lootens, Peter</creatorcontrib><creatorcontrib>Pollet, Sabien</creatorcontrib><creatorcontrib>Verheyen, Kris</creatorcontrib><creatorcontrib>De Frenne, Pieter</creatorcontrib><creatorcontrib>De Swaef, Tom</creatorcontrib><title>Data collection design for calibration of crop models using practical identifiability analysis</title><title>Computers and electronics in agriculture</title><description>•Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop observations every two weeks are advised. The collection of high-quality calibration data is essential for the estimation of parameter values and reliability of crop models. However, few tools are available to quantify the minimum number of observations needed for parameter estimation. We therefore here applied practical identifiability analysis, based on global sensitivity analysis, to design measurement campaigns on farmers’ fields. We applied the method for parameterization of the AquaCrop model for mid-early potatoes in Belgium. We generated several virtual observational datasets, considering multiple weather and soil conditions, and measurement frequencies and variables. This analysis resulted in experimental designs where measurement campaigns should be conducted over at least two growing seasons and in different soil types, using soil moisture sensors combined with field observations every two weeks. This method showed to be a useful planning tool for the collection of sufficient data for the calibration of process-based crop models.</description><subject>AquaCrop</subject><subject>Calibration</subject><subject>Data collection</subject><subject>Farmers’ fields</subject><subject>Identifiability analysis</subject><subject>Mathematical models</subject><subject>Model calibration</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameterization</subject><subject>Sensitivity analysis</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz12bppuPiyDrJyx40ashzccypdvUpBX235u1ns0lzPC8w8yD0DUpV6Qk7LZdmbAf9G5VlRXJLVav-QlaEMGrgpOSn6JFxkRBmJTn6CKltsy1FHyBPh_0qLEJXefMCKHH1iXY9diHiI3uoIn6tx08NjEMeB-s6xKeEvQ7PESdQxnDYF0_ggfdQAfjAeted4cE6RKded0ld_X3L9HH0-P75qXYvj2_bu63haGiHAtO9ZpIQ6wwzNYNk15LRnguG1_VlApBWU28yI8zTxrqPLVS2yYjsracLtHNPHeI4WtyaVRtmGJeIqmKkXVdMUmrTNUzlU9JKTqvhgh7HQ-KlOpoUrVqNqmOJtVsMsfu5li-3H2DiyoZcL1xFmK2pmyA_wf8AMCbf0Q</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Coudron, Willem</creator><creator>Gobin, Anne</creator><creator>Boeckaert, Charlotte</creator><creator>De Cuypere, Tim</creator><creator>Lootens, Peter</creator><creator>Pollet, Sabien</creator><creator>Verheyen, Kris</creator><creator>De Frenne, Pieter</creator><creator>De Swaef, Tom</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202111</creationdate><title>Data collection design for calibration of crop models using practical identifiability analysis</title><author>Coudron, Willem ; Gobin, Anne ; Boeckaert, Charlotte ; De Cuypere, Tim ; Lootens, Peter ; Pollet, Sabien ; Verheyen, Kris ; De Frenne, Pieter ; De Swaef, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-73a519c1d8c6d4b69fa9617d8cbf2433883641f888876f1b3ef3d9adb7d894d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AquaCrop</topic><topic>Calibration</topic><topic>Data collection</topic><topic>Farmers’ fields</topic><topic>Identifiability analysis</topic><topic>Mathematical models</topic><topic>Model calibration</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameterization</topic><topic>Sensitivity analysis</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coudron, Willem</creatorcontrib><creatorcontrib>Gobin, Anne</creatorcontrib><creatorcontrib>Boeckaert, Charlotte</creatorcontrib><creatorcontrib>De Cuypere, Tim</creatorcontrib><creatorcontrib>Lootens, Peter</creatorcontrib><creatorcontrib>Pollet, Sabien</creatorcontrib><creatorcontrib>Verheyen, Kris</creatorcontrib><creatorcontrib>De Frenne, Pieter</creatorcontrib><creatorcontrib>De Swaef, Tom</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coudron, Willem</au><au>Gobin, Anne</au><au>Boeckaert, Charlotte</au><au>De Cuypere, Tim</au><au>Lootens, Peter</au><au>Pollet, Sabien</au><au>Verheyen, Kris</au><au>De Frenne, Pieter</au><au>De Swaef, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data collection design for calibration of crop models using practical identifiability analysis</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2021-11</date><risdate>2021</risdate><volume>190</volume><spage>106457</spage><pages>106457-</pages><artnum>106457</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop observations every two weeks are advised. The collection of high-quality calibration data is essential for the estimation of parameter values and reliability of crop models. However, few tools are available to quantify the minimum number of observations needed for parameter estimation. We therefore here applied practical identifiability analysis, based on global sensitivity analysis, to design measurement campaigns on farmers’ fields. We applied the method for parameterization of the AquaCrop model for mid-early potatoes in Belgium. We generated several virtual observational datasets, considering multiple weather and soil conditions, and measurement frequencies and variables. This analysis resulted in experimental designs where measurement campaigns should be conducted over at least two growing seasons and in different soil types, using soil moisture sensors combined with field observations every two weeks. This method showed to be a useful planning tool for the collection of sufficient data for the calibration of process-based crop models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2021.106457</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2021-11, Vol.190, p.106457, Article 106457
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2615426932
source Elsevier ScienceDirect Journals
subjects AquaCrop
Calibration
Data collection
Farmers’ fields
Identifiability analysis
Mathematical models
Model calibration
Parameter estimation
Parameter identification
Parameterization
Sensitivity analysis
Soil conditions
Soil moisture
title Data collection design for calibration of crop models using practical identifiability analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20collection%20design%20for%20calibration%20of%20crop%20models%20using%20practical%20identifiability%20analysis&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Coudron,%20Willem&rft.date=2021-11&rft.volume=190&rft.spage=106457&rft.pages=106457-&rft.artnum=106457&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2021.106457&rft_dat=%3Cproquest_cross%3E2615426932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615426932&rft_id=info:pmid/&rft_els_id=S0168169921004749&rfr_iscdi=true