Data collection design for calibration of crop models using practical identifiability analysis
•Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop o...
Gespeichert in:
Veröffentlicht in: | Computers and electronics in agriculture 2021-11, Vol.190, p.106457, Article 106457 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106457 |
container_title | Computers and electronics in agriculture |
container_volume | 190 |
creator | Coudron, Willem Gobin, Anne Boeckaert, Charlotte De Cuypere, Tim Lootens, Peter Pollet, Sabien Verheyen, Kris De Frenne, Pieter De Swaef, Tom |
description | •Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop observations every two weeks are advised.
The collection of high-quality calibration data is essential for the estimation of parameter values and reliability of crop models. However, few tools are available to quantify the minimum number of observations needed for parameter estimation. We therefore here applied practical identifiability analysis, based on global sensitivity analysis, to design measurement campaigns on farmers’ fields. We applied the method for parameterization of the AquaCrop model for mid-early potatoes in Belgium. We generated several virtual observational datasets, considering multiple weather and soil conditions, and measurement frequencies and variables. This analysis resulted in experimental designs where measurement campaigns should be conducted over at least two growing seasons and in different soil types, using soil moisture sensors combined with field observations every two weeks. This method showed to be a useful planning tool for the collection of sufficient data for the calibration of process-based crop models. |
doi_str_mv | 10.1016/j.compag.2021.106457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615426932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169921004749</els_id><sourcerecordid>2615426932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-73a519c1d8c6d4b69fa9617d8cbf2433883641f888876f1b3ef3d9adb7d894d73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz12bppuPiyDrJyx40ashzccypdvUpBX235u1ns0lzPC8w8yD0DUpV6Qk7LZdmbAf9G5VlRXJLVav-QlaEMGrgpOSn6JFxkRBmJTn6CKltsy1FHyBPh_0qLEJXefMCKHH1iXY9diHiI3uoIn6tx08NjEMeB-s6xKeEvQ7PESdQxnDYF0_ggfdQAfjAeted4cE6RKded0ld_X3L9HH0-P75qXYvj2_bu63haGiHAtO9ZpIQ6wwzNYNk15LRnguG1_VlApBWU28yI8zTxrqPLVS2yYjsracLtHNPHeI4WtyaVRtmGJeIqmKkXVdMUmrTNUzlU9JKTqvhgh7HQ-KlOpoUrVqNqmOJtVsMsfu5li-3H2DiyoZcL1xFmK2pmyA_wf8AMCbf0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615426932</pqid></control><display><type>article</type><title>Data collection design for calibration of crop models using practical identifiability analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Coudron, Willem ; Gobin, Anne ; Boeckaert, Charlotte ; De Cuypere, Tim ; Lootens, Peter ; Pollet, Sabien ; Verheyen, Kris ; De Frenne, Pieter ; De Swaef, Tom</creator><creatorcontrib>Coudron, Willem ; Gobin, Anne ; Boeckaert, Charlotte ; De Cuypere, Tim ; Lootens, Peter ; Pollet, Sabien ; Verheyen, Kris ; De Frenne, Pieter ; De Swaef, Tom</creatorcontrib><description>•Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop observations every two weeks are advised.
The collection of high-quality calibration data is essential for the estimation of parameter values and reliability of crop models. However, few tools are available to quantify the minimum number of observations needed for parameter estimation. We therefore here applied practical identifiability analysis, based on global sensitivity analysis, to design measurement campaigns on farmers’ fields. We applied the method for parameterization of the AquaCrop model for mid-early potatoes in Belgium. We generated several virtual observational datasets, considering multiple weather and soil conditions, and measurement frequencies and variables. This analysis resulted in experimental designs where measurement campaigns should be conducted over at least two growing seasons and in different soil types, using soil moisture sensors combined with field observations every two weeks. This method showed to be a useful planning tool for the collection of sufficient data for the calibration of process-based crop models.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2021.106457</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AquaCrop ; Calibration ; Data collection ; Farmers’ fields ; Identifiability analysis ; Mathematical models ; Model calibration ; Parameter estimation ; Parameter identification ; Parameterization ; Sensitivity analysis ; Soil conditions ; Soil moisture</subject><ispartof>Computers and electronics in agriculture, 2021-11, Vol.190, p.106457, Article 106457</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-73a519c1d8c6d4b69fa9617d8cbf2433883641f888876f1b3ef3d9adb7d894d73</citedby><cites>FETCH-LOGICAL-c380t-73a519c1d8c6d4b69fa9617d8cbf2433883641f888876f1b3ef3d9adb7d894d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168169921004749$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Coudron, Willem</creatorcontrib><creatorcontrib>Gobin, Anne</creatorcontrib><creatorcontrib>Boeckaert, Charlotte</creatorcontrib><creatorcontrib>De Cuypere, Tim</creatorcontrib><creatorcontrib>Lootens, Peter</creatorcontrib><creatorcontrib>Pollet, Sabien</creatorcontrib><creatorcontrib>Verheyen, Kris</creatorcontrib><creatorcontrib>De Frenne, Pieter</creatorcontrib><creatorcontrib>De Swaef, Tom</creatorcontrib><title>Data collection design for calibration of crop models using practical identifiability analysis</title><title>Computers and electronics in agriculture</title><description>•Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop observations every two weeks are advised.
The collection of high-quality calibration data is essential for the estimation of parameter values and reliability of crop models. However, few tools are available to quantify the minimum number of observations needed for parameter estimation. We therefore here applied practical identifiability analysis, based on global sensitivity analysis, to design measurement campaigns on farmers’ fields. We applied the method for parameterization of the AquaCrop model for mid-early potatoes in Belgium. We generated several virtual observational datasets, considering multiple weather and soil conditions, and measurement frequencies and variables. This analysis resulted in experimental designs where measurement campaigns should be conducted over at least two growing seasons and in different soil types, using soil moisture sensors combined with field observations every two weeks. This method showed to be a useful planning tool for the collection of sufficient data for the calibration of process-based crop models.</description><subject>AquaCrop</subject><subject>Calibration</subject><subject>Data collection</subject><subject>Farmers’ fields</subject><subject>Identifiability analysis</subject><subject>Mathematical models</subject><subject>Model calibration</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameterization</subject><subject>Sensitivity analysis</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz12bppuPiyDrJyx40ashzccypdvUpBX235u1ns0lzPC8w8yD0DUpV6Qk7LZdmbAf9G5VlRXJLVav-QlaEMGrgpOSn6JFxkRBmJTn6CKltsy1FHyBPh_0qLEJXefMCKHH1iXY9diHiI3uoIn6tx08NjEMeB-s6xKeEvQ7PESdQxnDYF0_ggfdQAfjAeted4cE6RKded0ld_X3L9HH0-P75qXYvj2_bu63haGiHAtO9ZpIQ6wwzNYNk15LRnguG1_VlApBWU28yI8zTxrqPLVS2yYjsracLtHNPHeI4WtyaVRtmGJeIqmKkXVdMUmrTNUzlU9JKTqvhgh7HQ-KlOpoUrVqNqmOJtVsMsfu5li-3H2DiyoZcL1xFmK2pmyA_wf8AMCbf0Q</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Coudron, Willem</creator><creator>Gobin, Anne</creator><creator>Boeckaert, Charlotte</creator><creator>De Cuypere, Tim</creator><creator>Lootens, Peter</creator><creator>Pollet, Sabien</creator><creator>Verheyen, Kris</creator><creator>De Frenne, Pieter</creator><creator>De Swaef, Tom</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202111</creationdate><title>Data collection design for calibration of crop models using practical identifiability analysis</title><author>Coudron, Willem ; Gobin, Anne ; Boeckaert, Charlotte ; De Cuypere, Tim ; Lootens, Peter ; Pollet, Sabien ; Verheyen, Kris ; De Frenne, Pieter ; De Swaef, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-73a519c1d8c6d4b69fa9617d8cbf2433883641f888876f1b3ef3d9adb7d894d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AquaCrop</topic><topic>Calibration</topic><topic>Data collection</topic><topic>Farmers’ fields</topic><topic>Identifiability analysis</topic><topic>Mathematical models</topic><topic>Model calibration</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameterization</topic><topic>Sensitivity analysis</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coudron, Willem</creatorcontrib><creatorcontrib>Gobin, Anne</creatorcontrib><creatorcontrib>Boeckaert, Charlotte</creatorcontrib><creatorcontrib>De Cuypere, Tim</creatorcontrib><creatorcontrib>Lootens, Peter</creatorcontrib><creatorcontrib>Pollet, Sabien</creatorcontrib><creatorcontrib>Verheyen, Kris</creatorcontrib><creatorcontrib>De Frenne, Pieter</creatorcontrib><creatorcontrib>De Swaef, Tom</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coudron, Willem</au><au>Gobin, Anne</au><au>Boeckaert, Charlotte</au><au>De Cuypere, Tim</au><au>Lootens, Peter</au><au>Pollet, Sabien</au><au>Verheyen, Kris</au><au>De Frenne, Pieter</au><au>De Swaef, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data collection design for calibration of crop models using practical identifiability analysis</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2021-11</date><risdate>2021</risdate><volume>190</volume><spage>106457</spage><pages>106457-</pages><artnum>106457</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Global sensitivity analysis highlighted most influential parameters.•A guiding framework for data collection for process-based crop models was developed.•Calibration data for AquaCrop should include multiple years and soil types.•Soil moisture sensors for continuous monitoring are preferred.•Crop observations every two weeks are advised.
The collection of high-quality calibration data is essential for the estimation of parameter values and reliability of crop models. However, few tools are available to quantify the minimum number of observations needed for parameter estimation. We therefore here applied practical identifiability analysis, based on global sensitivity analysis, to design measurement campaigns on farmers’ fields. We applied the method for parameterization of the AquaCrop model for mid-early potatoes in Belgium. We generated several virtual observational datasets, considering multiple weather and soil conditions, and measurement frequencies and variables. This analysis resulted in experimental designs where measurement campaigns should be conducted over at least two growing seasons and in different soil types, using soil moisture sensors combined with field observations every two weeks. This method showed to be a useful planning tool for the collection of sufficient data for the calibration of process-based crop models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2021.106457</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1699 |
ispartof | Computers and electronics in agriculture, 2021-11, Vol.190, p.106457, Article 106457 |
issn | 0168-1699 1872-7107 |
language | eng |
recordid | cdi_proquest_journals_2615426932 |
source | Elsevier ScienceDirect Journals |
subjects | AquaCrop Calibration Data collection Farmers’ fields Identifiability analysis Mathematical models Model calibration Parameter estimation Parameter identification Parameterization Sensitivity analysis Soil conditions Soil moisture |
title | Data collection design for calibration of crop models using practical identifiability analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20collection%20design%20for%20calibration%20of%20crop%20models%20using%20practical%20identifiability%20analysis&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Coudron,%20Willem&rft.date=2021-11&rft.volume=190&rft.spage=106457&rft.pages=106457-&rft.artnum=106457&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2021.106457&rft_dat=%3Cproquest_cross%3E2615426932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615426932&rft_id=info:pmid/&rft_els_id=S0168169921004749&rfr_iscdi=true |