Thermal Inversions and Their Influence on the Composition of the Surface Air Layer over Moscow

Thermal stratification of the lower 800-m air layer over Moscow, including distribution functions of inversion heights and duration, has been studied in detail based on ECHO-1 sodar data. The distribution of the bottom height of elevated inversions, unlike the thickness of surface inversions, is bim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Atmospheric and oceanic physics 2021-11, Vol.57 (6), p.559-567
Hauptverfasser: Lokoshchenko, M. A., Bogdanovich, A. Yu, Elansky, N. F., Lezina, Ye. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 6
container_start_page 559
container_title Izvestiya. Atmospheric and oceanic physics
container_volume 57
creator Lokoshchenko, M. A.
Bogdanovich, A. Yu
Elansky, N. F.
Lezina, Ye. A.
description Thermal stratification of the lower 800-m air layer over Moscow, including distribution functions of inversion heights and duration, has been studied in detail based on ECHO-1 sodar data. The distribution of the bottom height of elevated inversions, unlike the thickness of surface inversions, is bimodal, which reflects the diversity of their origin. The lifetime of morning elevated inversions (remains of night surface inversions) is, on average, ~ 3 h, and, in some cases, over 6 h; their bottom heights usually do not exceed 350 m. Superlong elevated subsidence inversions are more often observed in Moscow from November to February and may be detected on sodar records continuously up to 120 h. The influence of retentive inversion layers on the surface content of trace gases in the atmosphere over Moscow has been studied based on the 2002–2016 data. The final destruction of morning elevated inversions results in a rapid acceleration of increase in the content of O 3 and a start of decrease in the content of NO 2 in the atmospheric surface layer. Both effects reflect the intensification of a vertical turbulent exchange. Such a rapid increase in the rate of growth of ozone after the inversion destruction is not associated with its photochemical generation and is apparently the result of dynamic processes (increased downward ozone fluxes from upper air layers). In contrast, under the conditions of long-lived elevated subsidence inversions in fall and winter, no statistically significant variations in the surface contents of five trace gases (O 3 , NO, NO 2 , CO, and SO 2 ) have been found.
doi_str_mv 10.1134/S0001433821060086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615313175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615313175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2ae94837e806f2e9d3f2aaf11180eb8ffce9f6214a99735fd63f4198aee562273</originalsourceid><addsrcrecordid>eNp1kEFLAzEUhIMoWKs_wFvA82pesslmj6WoLVQ8tIInl7h9sVvaZE12lf57Uyt4EE8PZr6ZB0PIJbBrAJHfzBljkAuhOTDFmFZHZABSykxx_XxMBns72_un5CzGNWOK56wYkJfFCsPWbOjUfWCIjXeRGrekSW5CEu2mR1cj9Y52K6Rjv219bLrEUW-_pXkfrEnEKPEzs8NAfWqiDz7W_vOcnFiziXjxc4fk6e52MZ5ks8f76Xg0y2oBqsu4wTLXokDNlOVYLoXlxlgA0AxftbU1llZxyE1ZFkLapRI2h1IbRKk4L8SQXB162-Dfe4xdtfZ9cOllxRVIAQIKmSg4UHXwMQa0VRuarQm7Cli1n7H6M2PK8EMmJta9Yfht_j_0BXWec4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615313175</pqid></control><display><type>article</type><title>Thermal Inversions and Their Influence on the Composition of the Surface Air Layer over Moscow</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lokoshchenko, M. A. ; Bogdanovich, A. Yu ; Elansky, N. F. ; Lezina, Ye. A.</creator><creatorcontrib>Lokoshchenko, M. A. ; Bogdanovich, A. Yu ; Elansky, N. F. ; Lezina, Ye. A.</creatorcontrib><description>Thermal stratification of the lower 800-m air layer over Moscow, including distribution functions of inversion heights and duration, has been studied in detail based on ECHO-1 sodar data. The distribution of the bottom height of elevated inversions, unlike the thickness of surface inversions, is bimodal, which reflects the diversity of their origin. The lifetime of morning elevated inversions (remains of night surface inversions) is, on average, ~ 3 h, and, in some cases, over 6 h; their bottom heights usually do not exceed 350 m. Superlong elevated subsidence inversions are more often observed in Moscow from November to February and may be detected on sodar records continuously up to 120 h. The influence of retentive inversion layers on the surface content of trace gases in the atmosphere over Moscow has been studied based on the 2002–2016 data. The final destruction of morning elevated inversions results in a rapid acceleration of increase in the content of O 3 and a start of decrease in the content of NO 2 in the atmospheric surface layer. Both effects reflect the intensification of a vertical turbulent exchange. Such a rapid increase in the rate of growth of ozone after the inversion destruction is not associated with its photochemical generation and is apparently the result of dynamic processes (increased downward ozone fluxes from upper air layers). In contrast, under the conditions of long-lived elevated subsidence inversions in fall and winter, no statistically significant variations in the surface contents of five trace gases (O 3 , NO, NO 2 , CO, and SO 2 ) have been found.</description><identifier>ISSN: 0001-4338</identifier><identifier>EISSN: 1555-628X</identifier><identifier>DOI: 10.1134/S0001433821060086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Air ; Climatology ; Destruction ; Distribution ; Distribution functions ; Earth and Environmental Science ; Earth Sciences ; Echoes ; Eddy flux ; Gases ; Geophysics/Geodesy ; Inversion layers ; Inversions ; Nitrogen dioxide ; Ozone ; Photochemicals ; Photochemistry ; Sodar ; Statistical analysis ; Subsidence ; Sulfur dioxide ; Surface boundary layer ; Surface layers ; Thermal stratification ; Trace gases ; Vertical turbulent exchange</subject><ispartof>Izvestiya. Atmospheric and oceanic physics, 2021-11, Vol.57 (6), p.559-567</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0001-4338, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 6, pp. 559–567. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2021, Vol. 57, No. 6, pp. 641–650.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2ae94837e806f2e9d3f2aaf11180eb8ffce9f6214a99735fd63f4198aee562273</citedby><cites>FETCH-LOGICAL-c316t-2ae94837e806f2e9d3f2aaf11180eb8ffce9f6214a99735fd63f4198aee562273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001433821060086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001433821060086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Lokoshchenko, M. A.</creatorcontrib><creatorcontrib>Bogdanovich, A. Yu</creatorcontrib><creatorcontrib>Elansky, N. F.</creatorcontrib><creatorcontrib>Lezina, Ye. A.</creatorcontrib><title>Thermal Inversions and Their Influence on the Composition of the Surface Air Layer over Moscow</title><title>Izvestiya. Atmospheric and oceanic physics</title><addtitle>Izv. Atmos. Ocean. Phys</addtitle><description>Thermal stratification of the lower 800-m air layer over Moscow, including distribution functions of inversion heights and duration, has been studied in detail based on ECHO-1 sodar data. The distribution of the bottom height of elevated inversions, unlike the thickness of surface inversions, is bimodal, which reflects the diversity of their origin. The lifetime of morning elevated inversions (remains of night surface inversions) is, on average, ~ 3 h, and, in some cases, over 6 h; their bottom heights usually do not exceed 350 m. Superlong elevated subsidence inversions are more often observed in Moscow from November to February and may be detected on sodar records continuously up to 120 h. The influence of retentive inversion layers on the surface content of trace gases in the atmosphere over Moscow has been studied based on the 2002–2016 data. The final destruction of morning elevated inversions results in a rapid acceleration of increase in the content of O 3 and a start of decrease in the content of NO 2 in the atmospheric surface layer. Both effects reflect the intensification of a vertical turbulent exchange. Such a rapid increase in the rate of growth of ozone after the inversion destruction is not associated with its photochemical generation and is apparently the result of dynamic processes (increased downward ozone fluxes from upper air layers). In contrast, under the conditions of long-lived elevated subsidence inversions in fall and winter, no statistically significant variations in the surface contents of five trace gases (O 3 , NO, NO 2 , CO, and SO 2 ) have been found.</description><subject>Air</subject><subject>Climatology</subject><subject>Destruction</subject><subject>Distribution</subject><subject>Distribution functions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Echoes</subject><subject>Eddy flux</subject><subject>Gases</subject><subject>Geophysics/Geodesy</subject><subject>Inversion layers</subject><subject>Inversions</subject><subject>Nitrogen dioxide</subject><subject>Ozone</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Sodar</subject><subject>Statistical analysis</subject><subject>Subsidence</subject><subject>Sulfur dioxide</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Thermal stratification</subject><subject>Trace gases</subject><subject>Vertical turbulent exchange</subject><issn>0001-4338</issn><issn>1555-628X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEUhIMoWKs_wFvA82pesslmj6WoLVQ8tIInl7h9sVvaZE12lf57Uyt4EE8PZr6ZB0PIJbBrAJHfzBljkAuhOTDFmFZHZABSykxx_XxMBns72_un5CzGNWOK56wYkJfFCsPWbOjUfWCIjXeRGrekSW5CEu2mR1cj9Y52K6Rjv219bLrEUW-_pXkfrEnEKPEzs8NAfWqiDz7W_vOcnFiziXjxc4fk6e52MZ5ks8f76Xg0y2oBqsu4wTLXokDNlOVYLoXlxlgA0AxftbU1llZxyE1ZFkLapRI2h1IbRKk4L8SQXB162-Dfe4xdtfZ9cOllxRVIAQIKmSg4UHXwMQa0VRuarQm7Cli1n7H6M2PK8EMmJta9Yfht_j_0BXWec4U</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lokoshchenko, M. A.</creator><creator>Bogdanovich, A. Yu</creator><creator>Elansky, N. F.</creator><creator>Lezina, Ye. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20211101</creationdate><title>Thermal Inversions and Their Influence on the Composition of the Surface Air Layer over Moscow</title><author>Lokoshchenko, M. A. ; Bogdanovich, A. Yu ; Elansky, N. F. ; Lezina, Ye. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2ae94837e806f2e9d3f2aaf11180eb8ffce9f6214a99735fd63f4198aee562273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air</topic><topic>Climatology</topic><topic>Destruction</topic><topic>Distribution</topic><topic>Distribution functions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Echoes</topic><topic>Eddy flux</topic><topic>Gases</topic><topic>Geophysics/Geodesy</topic><topic>Inversion layers</topic><topic>Inversions</topic><topic>Nitrogen dioxide</topic><topic>Ozone</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Sodar</topic><topic>Statistical analysis</topic><topic>Subsidence</topic><topic>Sulfur dioxide</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Thermal stratification</topic><topic>Trace gases</topic><topic>Vertical turbulent exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lokoshchenko, M. A.</creatorcontrib><creatorcontrib>Bogdanovich, A. Yu</creatorcontrib><creatorcontrib>Elansky, N. F.</creatorcontrib><creatorcontrib>Lezina, Ye. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lokoshchenko, M. A.</au><au>Bogdanovich, A. Yu</au><au>Elansky, N. F.</au><au>Lezina, Ye. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Inversions and Their Influence on the Composition of the Surface Air Layer over Moscow</atitle><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle><stitle>Izv. Atmos. Ocean. Phys</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>57</volume><issue>6</issue><spage>559</spage><epage>567</epage><pages>559-567</pages><issn>0001-4338</issn><eissn>1555-628X</eissn><abstract>Thermal stratification of the lower 800-m air layer over Moscow, including distribution functions of inversion heights and duration, has been studied in detail based on ECHO-1 sodar data. The distribution of the bottom height of elevated inversions, unlike the thickness of surface inversions, is bimodal, which reflects the diversity of their origin. The lifetime of morning elevated inversions (remains of night surface inversions) is, on average, ~ 3 h, and, in some cases, over 6 h; their bottom heights usually do not exceed 350 m. Superlong elevated subsidence inversions are more often observed in Moscow from November to February and may be detected on sodar records continuously up to 120 h. The influence of retentive inversion layers on the surface content of trace gases in the atmosphere over Moscow has been studied based on the 2002–2016 data. The final destruction of morning elevated inversions results in a rapid acceleration of increase in the content of O 3 and a start of decrease in the content of NO 2 in the atmospheric surface layer. Both effects reflect the intensification of a vertical turbulent exchange. Such a rapid increase in the rate of growth of ozone after the inversion destruction is not associated with its photochemical generation and is apparently the result of dynamic processes (increased downward ozone fluxes from upper air layers). In contrast, under the conditions of long-lived elevated subsidence inversions in fall and winter, no statistically significant variations in the surface contents of five trace gases (O 3 , NO, NO 2 , CO, and SO 2 ) have been found.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001433821060086</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4338
ispartof Izvestiya. Atmospheric and oceanic physics, 2021-11, Vol.57 (6), p.559-567
issn 0001-4338
1555-628X
language eng
recordid cdi_proquest_journals_2615313175
source SpringerLink Journals - AutoHoldings
subjects Air
Climatology
Destruction
Distribution
Distribution functions
Earth and Environmental Science
Earth Sciences
Echoes
Eddy flux
Gases
Geophysics/Geodesy
Inversion layers
Inversions
Nitrogen dioxide
Ozone
Photochemicals
Photochemistry
Sodar
Statistical analysis
Subsidence
Sulfur dioxide
Surface boundary layer
Surface layers
Thermal stratification
Trace gases
Vertical turbulent exchange
title Thermal Inversions and Their Influence on the Composition of the Surface Air Layer over Moscow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Inversions%20and%20Their%20Influence%20on%20the%20Composition%20of%20the%20Surface%20Air%20Layer%20over%20Moscow&rft.jtitle=Izvestiya.%20Atmospheric%20and%20oceanic%20physics&rft.au=Lokoshchenko,%20M.%20A.&rft.date=2021-11-01&rft.volume=57&rft.issue=6&rft.spage=559&rft.epage=567&rft.pages=559-567&rft.issn=0001-4338&rft.eissn=1555-628X&rft_id=info:doi/10.1134/S0001433821060086&rft_dat=%3Cproquest_cross%3E2615313175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615313175&rft_id=info:pmid/&rfr_iscdi=true