Ti atom doped single vacancy silicene for hydrogen energy storage: DFT study
Hydrogen adsorption on titanium (Ti) atom doped single vacancy silicene (SV‐SL) is investigated through first principles density functional theory (DFT) study. Strong hybridization of d‐orbitals of Ti atom to p‐orbitals of Si atoms results in a tight bond to the silicene sheet with energy of −6.48 e...
Gespeichert in:
Veröffentlicht in: | Journal of the Chinese Chemical Society (Taipei) 2021-12, Vol.68 (12), p.2243-2253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen adsorption on titanium (Ti) atom doped single vacancy silicene (SV‐SL) is investigated through first principles density functional theory (DFT) study. Strong hybridization of d‐orbitals of Ti atom to p‐orbitals of Si atoms results in a tight bond to the silicene sheet with energy of −6.48 eV and keeps away from metal clustering. Maximum 8 H
2
molecules firmly bind to Ti atom doped SV‐SL sheet with an adsorption energy ranging from −0.481 to −0.201 eV per H
2
molecule and hydrogen storage capacity (HSC) of 6.3 wt%. Double‐side H
2
adsorptions on hollow sites of Ti atom doped SV‐SL sheet are verified by structural and electronic properties. The partial density of states (PDOS) analysis shows the kubas interaction mainly caused the molecular H
2
adsorption. Further, the absence of spin‐up and spin‐down channels in electronic band structures of nH
2
molecule adsorption to Ti atom doped SV‐SL systems indicates its nonmagnetic nature. Conclusively, this study reveals that the Ti atom doped SV‐SL can be a promising candidate for hydrogen storage applications. |
---|---|
ISSN: | 0009-4536 2192-6549 |
DOI: | 10.1002/jccs.202100369 |