A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data

Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-10
Hauptverfasser: Asif, Muhammad Rizwan, Bording, Thue S., Maurya, Pradip K., Zhang, Bo, Fiandaca, Gianluca, Grombacher, Denys J., Christiansen, Anders V., Auken, Esben, Larsen, Jakob Juul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Asif, Muhammad Rizwan
Bording, Thue S.
Maurya, Pradip K.
Zhang, Bo
Fiandaca, Gianluca
Grombacher, Denys J.
Christiansen, Anders V.
Auken, Esben
Larsen, Jakob Juul
description Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology.
doi_str_mv 10.1109/TGRS.2021.3076121
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2615166059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9427988</ieee_id><sourcerecordid>2615166059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ff01e79c77cba0e4c35d5dc52ad4b543be6dab63e49a5870319fe80989d013ed3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ06dx5JZllrX1AUbF2HyeRGUtuknZko_fcmVFwduHznXPgIuQc2AmD6aTN_X4844zASLImBwwUZgFJpxGIpL8mAgY4jnmp-TW683zIGUkEyIDimr9g6s-si_DTuK3o2Hgu6OOWuKujMmT32Z1o2jq7Q-BCtj61x6Omy_kbnq6amTUk3ztS-wjrQ6Q5tcM3efNYYKktfTDC35Ko0O493fzkkH7PpZrKIVm_z5WS8iizXIkRlyQATbZPE5oahtEIVqrCKm0LmSooc48LksUCpjUoTJkCXmDKd6oKBwEIMyeN59-CaY4s-ZNumdXX3MuMxKIhjpnRHwZmyrvHeYZkdXLU37pQBy3qbWW8z621mfza7zsO5UyHiP68lT3Sail-4_3GL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615166059</pqid></control><display><type>article</type><title>A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data</title><source>IEEE Electronic Library (IEL)</source><creator>Asif, Muhammad Rizwan ; Bording, Thue S. ; Maurya, Pradip K. ; Zhang, Bo ; Fiandaca, Gianluca ; Grombacher, Denys J. ; Christiansen, Anders V. ; Auken, Esben ; Larsen, Jakob Juul</creator><creatorcontrib>Asif, Muhammad Rizwan ; Bording, Thue S. ; Maurya, Pradip K. ; Zhang, Bo ; Fiandaca, Gianluca ; Grombacher, Denys J. ; Christiansen, Anders V. ; Auken, Esben ; Larsen, Jakob Juul</creatorcontrib><description>Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3076121</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Computational modeling ; Computer applications ; Computing time ; Conductivity ; Data models ; Forward modeling ; Frameworks ; Geology ; inverse modeling ; Jacobi matrix method ; Jacobian matrices ; Jacobian matrix ; Least squares ; Logic gates ; Mathematical model ; Model accuracy ; Modelling ; Neural networks ; Neurons ; Surveys ; Tolerances ; Tolerances (dimensional) ; Training ; transient electromagnetics (TEM)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ff01e79c77cba0e4c35d5dc52ad4b543be6dab63e49a5870319fe80989d013ed3</citedby><cites>FETCH-LOGICAL-c293t-ff01e79c77cba0e4c35d5dc52ad4b543be6dab63e49a5870319fe80989d013ed3</cites><orcidid>0000-0001-5829-2913 ; 0000-0003-2447-0085 ; 0000-0003-1385-8041 ; 0000-0002-5397-4832 ; 0000-0002-4509-4480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9427988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9427988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asif, Muhammad Rizwan</creatorcontrib><creatorcontrib>Bording, Thue S.</creatorcontrib><creatorcontrib>Maurya, Pradip K.</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Fiandaca, Gianluca</creatorcontrib><creatorcontrib>Grombacher, Denys J.</creatorcontrib><creatorcontrib>Christiansen, Anders V.</creatorcontrib><creatorcontrib>Auken, Esben</creatorcontrib><creatorcontrib>Larsen, Jakob Juul</creatorcontrib><title>A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Conductivity</subject><subject>Data models</subject><subject>Forward modeling</subject><subject>Frameworks</subject><subject>Geology</subject><subject>inverse modeling</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Least squares</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Surveys</subject><subject>Tolerances</subject><subject>Tolerances (dimensional)</subject><subject>Training</subject><subject>transient electromagnetics (TEM)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ06dx5JZllrX1AUbF2HyeRGUtuknZko_fcmVFwduHznXPgIuQc2AmD6aTN_X4844zASLImBwwUZgFJpxGIpL8mAgY4jnmp-TW683zIGUkEyIDimr9g6s-si_DTuK3o2Hgu6OOWuKujMmT32Z1o2jq7Q-BCtj61x6Omy_kbnq6amTUk3ztS-wjrQ6Q5tcM3efNYYKktfTDC35Ko0O493fzkkH7PpZrKIVm_z5WS8iizXIkRlyQATbZPE5oahtEIVqrCKm0LmSooc48LksUCpjUoTJkCXmDKd6oKBwEIMyeN59-CaY4s-ZNumdXX3MuMxKIhjpnRHwZmyrvHeYZkdXLU37pQBy3qbWW8z621mfza7zsO5UyHiP68lT3Sail-4_3GL</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Asif, Muhammad Rizwan</creator><creator>Bording, Thue S.</creator><creator>Maurya, Pradip K.</creator><creator>Zhang, Bo</creator><creator>Fiandaca, Gianluca</creator><creator>Grombacher, Denys J.</creator><creator>Christiansen, Anders V.</creator><creator>Auken, Esben</creator><creator>Larsen, Jakob Juul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5829-2913</orcidid><orcidid>https://orcid.org/0000-0003-2447-0085</orcidid><orcidid>https://orcid.org/0000-0003-1385-8041</orcidid><orcidid>https://orcid.org/0000-0002-5397-4832</orcidid><orcidid>https://orcid.org/0000-0002-4509-4480</orcidid></search><sort><creationdate>2022</creationdate><title>A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data</title><author>Asif, Muhammad Rizwan ; Bording, Thue S. ; Maurya, Pradip K. ; Zhang, Bo ; Fiandaca, Gianluca ; Grombacher, Denys J. ; Christiansen, Anders V. ; Auken, Esben ; Larsen, Jakob Juul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ff01e79c77cba0e4c35d5dc52ad4b543be6dab63e49a5870319fe80989d013ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Conductivity</topic><topic>Data models</topic><topic>Forward modeling</topic><topic>Frameworks</topic><topic>Geology</topic><topic>inverse modeling</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Least squares</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Surveys</topic><topic>Tolerances</topic><topic>Tolerances (dimensional)</topic><topic>Training</topic><topic>transient electromagnetics (TEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asif, Muhammad Rizwan</creatorcontrib><creatorcontrib>Bording, Thue S.</creatorcontrib><creatorcontrib>Maurya, Pradip K.</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Fiandaca, Gianluca</creatorcontrib><creatorcontrib>Grombacher, Denys J.</creatorcontrib><creatorcontrib>Christiansen, Anders V.</creatorcontrib><creatorcontrib>Auken, Esben</creatorcontrib><creatorcontrib>Larsen, Jakob Juul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asif, Muhammad Rizwan</au><au>Bording, Thue S.</au><au>Maurya, Pradip K.</au><au>Zhang, Bo</au><au>Fiandaca, Gianluca</au><au>Grombacher, Denys J.</au><au>Christiansen, Anders V.</au><au>Auken, Esben</au><au>Larsen, Jakob Juul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3076121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5829-2913</orcidid><orcidid>https://orcid.org/0000-0003-2447-0085</orcidid><orcidid>https://orcid.org/0000-0003-1385-8041</orcidid><orcidid>https://orcid.org/0000-0002-5397-4832</orcidid><orcidid>https://orcid.org/0000-0002-4509-4480</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2615166059
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial neural networks
Computational modeling
Computer applications
Computing time
Conductivity
Data models
Forward modeling
Frameworks
Geology
inverse modeling
Jacobi matrix method
Jacobian matrices
Jacobian matrix
Least squares
Logic gates
Mathematical model
Model accuracy
Modelling
Neural networks
Neurons
Surveys
Tolerances
Tolerances (dimensional)
Training
transient electromagnetics (TEM)
title A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Network-Based%20Hybrid%20Framework%20for%20Least-Squares%20Inversion%20of%20Transient%20Electromagnetic%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Asif,%20Muhammad%20Rizwan&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3076121&rft_dat=%3Cproquest_RIE%3E2615166059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615166059&rft_id=info:pmid/&rft_ieee_id=9427988&rfr_iscdi=true