A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data
Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forw...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Asif, Muhammad Rizwan Bording, Thue S. Maurya, Pradip K. Zhang, Bo Fiandaca, Gianluca Grombacher, Denys J. Christiansen, Anders V. Auken, Esben Larsen, Jakob Juul |
description | Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology. |
doi_str_mv | 10.1109/TGRS.2021.3076121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2615166059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9427988</ieee_id><sourcerecordid>2615166059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ff01e79c77cba0e4c35d5dc52ad4b543be6dab63e49a5870319fe80989d013ed3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ06dx5JZllrX1AUbF2HyeRGUtuknZko_fcmVFwduHznXPgIuQc2AmD6aTN_X4844zASLImBwwUZgFJpxGIpL8mAgY4jnmp-TW683zIGUkEyIDimr9g6s-si_DTuK3o2Hgu6OOWuKujMmT32Z1o2jq7Q-BCtj61x6Omy_kbnq6amTUk3ztS-wjrQ6Q5tcM3efNYYKktfTDC35Ko0O493fzkkH7PpZrKIVm_z5WS8iizXIkRlyQATbZPE5oahtEIVqrCKm0LmSooc48LksUCpjUoTJkCXmDKd6oKBwEIMyeN59-CaY4s-ZNumdXX3MuMxKIhjpnRHwZmyrvHeYZkdXLU37pQBy3qbWW8z621mfza7zsO5UyHiP68lT3Sail-4_3GL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615166059</pqid></control><display><type>article</type><title>A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data</title><source>IEEE Electronic Library (IEL)</source><creator>Asif, Muhammad Rizwan ; Bording, Thue S. ; Maurya, Pradip K. ; Zhang, Bo ; Fiandaca, Gianluca ; Grombacher, Denys J. ; Christiansen, Anders V. ; Auken, Esben ; Larsen, Jakob Juul</creator><creatorcontrib>Asif, Muhammad Rizwan ; Bording, Thue S. ; Maurya, Pradip K. ; Zhang, Bo ; Fiandaca, Gianluca ; Grombacher, Denys J. ; Christiansen, Anders V. ; Auken, Esben ; Larsen, Jakob Juul</creatorcontrib><description>Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3076121</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Computational modeling ; Computer applications ; Computing time ; Conductivity ; Data models ; Forward modeling ; Frameworks ; Geology ; inverse modeling ; Jacobi matrix method ; Jacobian matrices ; Jacobian matrix ; Least squares ; Logic gates ; Mathematical model ; Model accuracy ; Modelling ; Neural networks ; Neurons ; Surveys ; Tolerances ; Tolerances (dimensional) ; Training ; transient electromagnetics (TEM)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ff01e79c77cba0e4c35d5dc52ad4b543be6dab63e49a5870319fe80989d013ed3</citedby><cites>FETCH-LOGICAL-c293t-ff01e79c77cba0e4c35d5dc52ad4b543be6dab63e49a5870319fe80989d013ed3</cites><orcidid>0000-0001-5829-2913 ; 0000-0003-2447-0085 ; 0000-0003-1385-8041 ; 0000-0002-5397-4832 ; 0000-0002-4509-4480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9427988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9427988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asif, Muhammad Rizwan</creatorcontrib><creatorcontrib>Bording, Thue S.</creatorcontrib><creatorcontrib>Maurya, Pradip K.</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Fiandaca, Gianluca</creatorcontrib><creatorcontrib>Grombacher, Denys J.</creatorcontrib><creatorcontrib>Christiansen, Anders V.</creatorcontrib><creatorcontrib>Auken, Esben</creatorcontrib><creatorcontrib>Larsen, Jakob Juul</creatorcontrib><title>A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Conductivity</subject><subject>Data models</subject><subject>Forward modeling</subject><subject>Frameworks</subject><subject>Geology</subject><subject>inverse modeling</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Least squares</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Surveys</subject><subject>Tolerances</subject><subject>Tolerances (dimensional)</subject><subject>Training</subject><subject>transient electromagnetics (TEM)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ06dx5JZllrX1AUbF2HyeRGUtuknZko_fcmVFwduHznXPgIuQc2AmD6aTN_X4844zASLImBwwUZgFJpxGIpL8mAgY4jnmp-TW683zIGUkEyIDimr9g6s-si_DTuK3o2Hgu6OOWuKujMmT32Z1o2jq7Q-BCtj61x6Omy_kbnq6amTUk3ztS-wjrQ6Q5tcM3efNYYKktfTDC35Ko0O493fzkkH7PpZrKIVm_z5WS8iizXIkRlyQATbZPE5oahtEIVqrCKm0LmSooc48LksUCpjUoTJkCXmDKd6oKBwEIMyeN59-CaY4s-ZNumdXX3MuMxKIhjpnRHwZmyrvHeYZkdXLU37pQBy3qbWW8z621mfza7zsO5UyHiP68lT3Sail-4_3GL</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Asif, Muhammad Rizwan</creator><creator>Bording, Thue S.</creator><creator>Maurya, Pradip K.</creator><creator>Zhang, Bo</creator><creator>Fiandaca, Gianluca</creator><creator>Grombacher, Denys J.</creator><creator>Christiansen, Anders V.</creator><creator>Auken, Esben</creator><creator>Larsen, Jakob Juul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5829-2913</orcidid><orcidid>https://orcid.org/0000-0003-2447-0085</orcidid><orcidid>https://orcid.org/0000-0003-1385-8041</orcidid><orcidid>https://orcid.org/0000-0002-5397-4832</orcidid><orcidid>https://orcid.org/0000-0002-4509-4480</orcidid></search><sort><creationdate>2022</creationdate><title>A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data</title><author>Asif, Muhammad Rizwan ; Bording, Thue S. ; Maurya, Pradip K. ; Zhang, Bo ; Fiandaca, Gianluca ; Grombacher, Denys J. ; Christiansen, Anders V. ; Auken, Esben ; Larsen, Jakob Juul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ff01e79c77cba0e4c35d5dc52ad4b543be6dab63e49a5870319fe80989d013ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Conductivity</topic><topic>Data models</topic><topic>Forward modeling</topic><topic>Frameworks</topic><topic>Geology</topic><topic>inverse modeling</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Least squares</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Surveys</topic><topic>Tolerances</topic><topic>Tolerances (dimensional)</topic><topic>Training</topic><topic>transient electromagnetics (TEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asif, Muhammad Rizwan</creatorcontrib><creatorcontrib>Bording, Thue S.</creatorcontrib><creatorcontrib>Maurya, Pradip K.</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Fiandaca, Gianluca</creatorcontrib><creatorcontrib>Grombacher, Denys J.</creatorcontrib><creatorcontrib>Christiansen, Anders V.</creatorcontrib><creatorcontrib>Auken, Esben</creatorcontrib><creatorcontrib>Larsen, Jakob Juul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asif, Muhammad Rizwan</au><au>Bording, Thue S.</au><au>Maurya, Pradip K.</au><au>Zhang, Bo</au><au>Fiandaca, Gianluca</au><au>Grombacher, Denys J.</au><au>Christiansen, Anders V.</au><au>Auken, Esben</au><au>Larsen, Jakob Juul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3076121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5829-2913</orcidid><orcidid>https://orcid.org/0000-0003-2447-0085</orcidid><orcidid>https://orcid.org/0000-0003-1385-8041</orcidid><orcidid>https://orcid.org/0000-0002-5397-4832</orcidid><orcidid>https://orcid.org/0000-0002-4509-4480</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2615166059 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Artificial neural networks Computational modeling Computer applications Computing time Conductivity Data models Forward modeling Frameworks Geology inverse modeling Jacobi matrix method Jacobian matrices Jacobian matrix Least squares Logic gates Mathematical model Model accuracy Modelling Neural networks Neurons Surveys Tolerances Tolerances (dimensional) Training transient electromagnetics (TEM) |
title | A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Network-Based%20Hybrid%20Framework%20for%20Least-Squares%20Inversion%20of%20Transient%20Electromagnetic%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Asif,%20Muhammad%20Rizwan&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3076121&rft_dat=%3Cproquest_RIE%3E2615166059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615166059&rft_id=info:pmid/&rft_ieee_id=9427988&rfr_iscdi=true |