End-to-End Self-Driving Approach Independent of Irrelevant Roadside Objects With Auto-Encoder
On a highway, the frequency of occurrence of irrelevant features, such as trees, varies a lot in different scenes. A limitation of the deep conventional neural networks used in end-to-end self-driving systems is that if the incoming images contain too much information, it makes it difficult for the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-01, Vol.23 (1), p.641-650 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 650 |
---|---|
container_issue | 1 |
container_start_page | 641 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Wang, Tinghan Luo, Yugong Liu, Jinxin Chen, Rui Li, Keqiang |
description | On a highway, the frequency of occurrence of irrelevant features, such as trees, varies a lot in different scenes. A limitation of the deep conventional neural networks used in end-to-end self-driving systems is that if the incoming images contain too much information, it makes it difficult for the network to extract only the subset of features required for decision making. Consequently, while existing end-to-end approaches may perform well in training scenes, they may not work correctly in other scenes. In this study, we developed a novel training method for an auto-encoder that equips it to ignore irrelevant features in input images while simultaneously retaining relevant features. Compared with feature extraction methods in existing end-to-end approaches, the proposed method reduces the labeling costs by only requiring image-level tags. The method was validated by training a convolutional neural network model to process the output of the encoder and produce a steering angle to control the vehicle. The entire end-to-end self-driving approach can ignore the influence of irrelevant features even though there are no such features when training the convolutional neural network. |
doi_str_mv | 10.1109/TITS.2020.3018473 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2615164040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9187264</ieee_id><sourcerecordid>2615164040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3bc263cfb08d7673b4549202ff6d7706be8a62d6fd4e4135d21c718365fddf93</originalsourceid><addsrcrecordid>eNo9UNtKw0AQXUTBevkA8WXB59SdvSV5LLVqoFCwAZ9kSfZiU2oSd9OCf-_GFl_mzAxnzswchO6ATAFI_lgW5XpKCSVTRiDjKTtDExAiSwgBeT7mlCc5EeQSXYWwjV0uACboY9GaZOiSCHhtdy558s2haT_xrO99V-kNLlpjextDO-DO4cJ7u7OHKlZvXWVCYyxe1Vurh4Dfm2GDZ_s_Od0Z62_Qhat2wd6e8BqVz4ty_posVy_FfLZMNM3ZkLBaU8m0q0lmUpmymguex2eckyZNiaxtVklqpDPccmDCUNApZEwKZ4zL2TV6OMrGk7_3Ngxq2-19GzcqKkGA5ISTyIIjS_suBG-d6n3zVfkfBUSNJqrRRDWaqE4mxpn740xjrf3n55ClVHL2CxWebPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615164040</pqid></control><display><type>article</type><title>End-to-End Self-Driving Approach Independent of Irrelevant Roadside Objects With Auto-Encoder</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Tinghan ; Luo, Yugong ; Liu, Jinxin ; Chen, Rui ; Li, Keqiang</creator><creatorcontrib>Wang, Tinghan ; Luo, Yugong ; Liu, Jinxin ; Chen, Rui ; Li, Keqiang</creatorcontrib><description>On a highway, the frequency of occurrence of irrelevant features, such as trees, varies a lot in different scenes. A limitation of the deep conventional neural networks used in end-to-end self-driving systems is that if the incoming images contain too much information, it makes it difficult for the network to extract only the subset of features required for decision making. Consequently, while existing end-to-end approaches may perform well in training scenes, they may not work correctly in other scenes. In this study, we developed a novel training method for an auto-encoder that equips it to ignore irrelevant features in input images while simultaneously retaining relevant features. Compared with feature extraction methods in existing end-to-end approaches, the proposed method reduces the labeling costs by only requiring image-level tags. The method was validated by training a convolutional neural network model to process the output of the encoder and produce a steering angle to control the vehicle. The entire end-to-end self-driving approach can ignore the influence of irrelevant features even though there are no such features when training the convolutional neural network.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3018473</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; auto-encoder ; Autonomous vehicles ; Coders ; Decision making ; End-to-end self-driving ; Feature extraction ; irrelevant features ; Neural networks ; Roads ; Roadsides ; Steering ; Task analysis ; Training</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-01, Vol.23 (1), p.641-650</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3bc263cfb08d7673b4549202ff6d7706be8a62d6fd4e4135d21c718365fddf93</citedby><cites>FETCH-LOGICAL-c293t-3bc263cfb08d7673b4549202ff6d7706be8a62d6fd4e4135d21c718365fddf93</cites><orcidid>0000-0001-7217-3611 ; 0000-0002-9333-7416 ; 0000-0002-5660-8889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9187264$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9187264$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Tinghan</creatorcontrib><creatorcontrib>Luo, Yugong</creatorcontrib><creatorcontrib>Liu, Jinxin</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Li, Keqiang</creatorcontrib><title>End-to-End Self-Driving Approach Independent of Irrelevant Roadside Objects With Auto-Encoder</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>On a highway, the frequency of occurrence of irrelevant features, such as trees, varies a lot in different scenes. A limitation of the deep conventional neural networks used in end-to-end self-driving systems is that if the incoming images contain too much information, it makes it difficult for the network to extract only the subset of features required for decision making. Consequently, while existing end-to-end approaches may perform well in training scenes, they may not work correctly in other scenes. In this study, we developed a novel training method for an auto-encoder that equips it to ignore irrelevant features in input images while simultaneously retaining relevant features. Compared with feature extraction methods in existing end-to-end approaches, the proposed method reduces the labeling costs by only requiring image-level tags. The method was validated by training a convolutional neural network model to process the output of the encoder and produce a steering angle to control the vehicle. The entire end-to-end self-driving approach can ignore the influence of irrelevant features even though there are no such features when training the convolutional neural network.</description><subject>Artificial neural networks</subject><subject>auto-encoder</subject><subject>Autonomous vehicles</subject><subject>Coders</subject><subject>Decision making</subject><subject>End-to-end self-driving</subject><subject>Feature extraction</subject><subject>irrelevant features</subject><subject>Neural networks</subject><subject>Roads</subject><subject>Roadsides</subject><subject>Steering</subject><subject>Task analysis</subject><subject>Training</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UNtKw0AQXUTBevkA8WXB59SdvSV5LLVqoFCwAZ9kSfZiU2oSd9OCf-_GFl_mzAxnzswchO6ATAFI_lgW5XpKCSVTRiDjKTtDExAiSwgBeT7mlCc5EeQSXYWwjV0uACboY9GaZOiSCHhtdy558s2haT_xrO99V-kNLlpjextDO-DO4cJ7u7OHKlZvXWVCYyxe1Vurh4Dfm2GDZ_s_Od0Z62_Qhat2wd6e8BqVz4ty_posVy_FfLZMNM3ZkLBaU8m0q0lmUpmymguex2eckyZNiaxtVklqpDPccmDCUNApZEwKZ4zL2TV6OMrGk7_3Ngxq2-19GzcqKkGA5ISTyIIjS_suBG-d6n3zVfkfBUSNJqrRRDWaqE4mxpn740xjrf3n55ClVHL2CxWebPo</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Wang, Tinghan</creator><creator>Luo, Yugong</creator><creator>Liu, Jinxin</creator><creator>Chen, Rui</creator><creator>Li, Keqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7217-3611</orcidid><orcidid>https://orcid.org/0000-0002-9333-7416</orcidid><orcidid>https://orcid.org/0000-0002-5660-8889</orcidid></search><sort><creationdate>202201</creationdate><title>End-to-End Self-Driving Approach Independent of Irrelevant Roadside Objects With Auto-Encoder</title><author>Wang, Tinghan ; Luo, Yugong ; Liu, Jinxin ; Chen, Rui ; Li, Keqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3bc263cfb08d7673b4549202ff6d7706be8a62d6fd4e4135d21c718365fddf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>auto-encoder</topic><topic>Autonomous vehicles</topic><topic>Coders</topic><topic>Decision making</topic><topic>End-to-end self-driving</topic><topic>Feature extraction</topic><topic>irrelevant features</topic><topic>Neural networks</topic><topic>Roads</topic><topic>Roadsides</topic><topic>Steering</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tinghan</creatorcontrib><creatorcontrib>Luo, Yugong</creatorcontrib><creatorcontrib>Liu, Jinxin</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Li, Keqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Tinghan</au><au>Luo, Yugong</au><au>Liu, Jinxin</au><au>Chen, Rui</au><au>Li, Keqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End-to-End Self-Driving Approach Independent of Irrelevant Roadside Objects With Auto-Encoder</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-01</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>641</spage><epage>650</epage><pages>641-650</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>On a highway, the frequency of occurrence of irrelevant features, such as trees, varies a lot in different scenes. A limitation of the deep conventional neural networks used in end-to-end self-driving systems is that if the incoming images contain too much information, it makes it difficult for the network to extract only the subset of features required for decision making. Consequently, while existing end-to-end approaches may perform well in training scenes, they may not work correctly in other scenes. In this study, we developed a novel training method for an auto-encoder that equips it to ignore irrelevant features in input images while simultaneously retaining relevant features. Compared with feature extraction methods in existing end-to-end approaches, the proposed method reduces the labeling costs by only requiring image-level tags. The method was validated by training a convolutional neural network model to process the output of the encoder and produce a steering angle to control the vehicle. The entire end-to-end self-driving approach can ignore the influence of irrelevant features even though there are no such features when training the convolutional neural network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3018473</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7217-3611</orcidid><orcidid>https://orcid.org/0000-0002-9333-7416</orcidid><orcidid>https://orcid.org/0000-0002-5660-8889</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-01, Vol.23 (1), p.641-650 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2615164040 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks auto-encoder Autonomous vehicles Coders Decision making End-to-end self-driving Feature extraction irrelevant features Neural networks Roads Roadsides Steering Task analysis Training |
title | End-to-End Self-Driving Approach Independent of Irrelevant Roadside Objects With Auto-Encoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End-to-End%20Self-Driving%20Approach%20Independent%20of%20Irrelevant%20Roadside%20Objects%20With%20Auto-Encoder&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Tinghan&rft.date=2022-01&rft.volume=23&rft.issue=1&rft.spage=641&rft.epage=650&rft.pages=641-650&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3018473&rft_dat=%3Cproquest_RIE%3E2615164040%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615164040&rft_id=info:pmid/&rft_ieee_id=9187264&rfr_iscdi=true |