Effect of Temperature on the Strength of Lime–Cement Stabilized Norwegian Clays

AbstractWhen performing soil stabilization of soft clays, the effect of temperature on the properties of the stabilized material is usually not considered. In this study, the curing temperature development and its effect on the shear strength and stiffness of lime–cement stabilized Norwegian clays w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geotechnical and geoenvironmental engineering 2022-03, Vol.148 (3)
Hauptverfasser: Fiskvik Bache, Bjørn Kristian, Wiersholm, Pernille, Paniagua, Priscilla, Emdal, Arnfinn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of geotechnical and geoenvironmental engineering
container_volume 148
creator Fiskvik Bache, Bjørn Kristian
Wiersholm, Pernille
Paniagua, Priscilla
Emdal, Arnfinn
description AbstractWhen performing soil stabilization of soft clays, the effect of temperature on the properties of the stabilized material is usually not considered. In this study, the curing temperature development and its effect on the shear strength and stiffness of lime–cement stabilized Norwegian clays was studied by field measurements, laboratory tests, and numerical analysis. The study includes 18 samples cured under different temperatures and tested by uniaxial unconfined compression (UC) tests. By increasing the curing temperature of the stabilized soil, a significantly faster strength development and higher shear strength values were observed. Monitoring the temperature in the field and introducing the maturity number allowed for the calculation of the maturity of the installed piles. In combination with laboratory results, the use of a maturity number allows to estimate shear strength and the stiffness development of the installed columns. This may allow for a higher utilization of the stabilized material, which further on can lead to reduced amount of binder or a reduction of installed columns, giving reduced costs and carbon dioxide emissions associated with the installation process.
doi_str_mv 10.1061/(ASCE)GT.1943-5606.0002699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614981452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614981452</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-7adfb4578b4fb73e55ff2c4f8350c5c390af78611ba3e63f359f5fdf775e277f3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFbfIehFD6m72a_Em4RahaJI43nZpDNtSpvUzRapJ9_BN_RJTGjVk6cZ5v8x8CPknNEBo4pdX95O0uHVKBuwRPBQKqoGlNJIJckB6f3eDtudJjSkkWDH5KRpFq1J0DjqkechIhQ-qDHIYLUGZ_3GQVBXgZ9DMPEOqpmfd_K4XMHXx2cKK6h8q9i8XJbvMA0ea_cGs9JWQbq02-aUHKFdNnC2n33ycjfM0vtw_DR6SG_HoeVc-1DbKeZC6jgXmGsOUiJGhcCYS1rIgifUoo4VY7nloDhymaDEKWotIdIaeZ9c7HrXrn7dQOPNot64qn1pIsVEEjMho9Z1s3MVrm4aB2jWrlxZtzWMmg6hMR1CM8pMh8t0uMweYRtWu7BtCvir_0n-H_wGKl12WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614981452</pqid></control><display><type>article</type><title>Effect of Temperature on the Strength of Lime–Cement Stabilized Norwegian Clays</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Fiskvik Bache, Bjørn Kristian ; Wiersholm, Pernille ; Paniagua, Priscilla ; Emdal, Arnfinn</creator><creatorcontrib>Fiskvik Bache, Bjørn Kristian ; Wiersholm, Pernille ; Paniagua, Priscilla ; Emdal, Arnfinn</creatorcontrib><description>AbstractWhen performing soil stabilization of soft clays, the effect of temperature on the properties of the stabilized material is usually not considered. In this study, the curing temperature development and its effect on the shear strength and stiffness of lime–cement stabilized Norwegian clays was studied by field measurements, laboratory tests, and numerical analysis. The study includes 18 samples cured under different temperatures and tested by uniaxial unconfined compression (UC) tests. By increasing the curing temperature of the stabilized soil, a significantly faster strength development and higher shear strength values were observed. Monitoring the temperature in the field and introducing the maturity number allowed for the calculation of the maturity of the installed piles. In combination with laboratory results, the use of a maturity number allows to estimate shear strength and the stiffness development of the installed columns. This may allow for a higher utilization of the stabilized material, which further on can lead to reduced amount of binder or a reduction of installed columns, giving reduced costs and carbon dioxide emissions associated with the installation process.</description><identifier>ISSN: 1090-0241</identifier><identifier>EISSN: 1943-5606</identifier><identifier>DOI: 10.1061/(ASCE)GT.1943-5606.0002699</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Carbon dioxide ; Carbon dioxide emissions ; Cement ; Clay ; Columns (structural) ; Compression ; Compression tests ; Concrete ; Curing ; Curing (processing) ; Emissions ; Laboratories ; Laboratory tests ; Lime ; Maturity ; Numerical analysis ; Shear strength ; Soil ; Soil lime ; Soil stabilization ; Soil temperature ; Stiffness ; Technical Papers ; Temperature ; Temperature effects</subject><ispartof>Journal of geotechnical and geoenvironmental engineering, 2022-03, Vol.148 (3)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-7adfb4578b4fb73e55ff2c4f8350c5c390af78611ba3e63f359f5fdf775e277f3</citedby><cites>FETCH-LOGICAL-a337t-7adfb4578b4fb73e55ff2c4f8350c5c390af78611ba3e63f359f5fdf775e277f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)GT.1943-5606.0002699$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)GT.1943-5606.0002699$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Fiskvik Bache, Bjørn Kristian</creatorcontrib><creatorcontrib>Wiersholm, Pernille</creatorcontrib><creatorcontrib>Paniagua, Priscilla</creatorcontrib><creatorcontrib>Emdal, Arnfinn</creatorcontrib><title>Effect of Temperature on the Strength of Lime–Cement Stabilized Norwegian Clays</title><title>Journal of geotechnical and geoenvironmental engineering</title><description>AbstractWhen performing soil stabilization of soft clays, the effect of temperature on the properties of the stabilized material is usually not considered. In this study, the curing temperature development and its effect on the shear strength and stiffness of lime–cement stabilized Norwegian clays was studied by field measurements, laboratory tests, and numerical analysis. The study includes 18 samples cured under different temperatures and tested by uniaxial unconfined compression (UC) tests. By increasing the curing temperature of the stabilized soil, a significantly faster strength development and higher shear strength values were observed. Monitoring the temperature in the field and introducing the maturity number allowed for the calculation of the maturity of the installed piles. In combination with laboratory results, the use of a maturity number allows to estimate shear strength and the stiffness development of the installed columns. This may allow for a higher utilization of the stabilized material, which further on can lead to reduced amount of binder or a reduction of installed columns, giving reduced costs and carbon dioxide emissions associated with the installation process.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Cement</subject><subject>Clay</subject><subject>Columns (structural)</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Concrete</subject><subject>Curing</subject><subject>Curing (processing)</subject><subject>Emissions</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Lime</subject><subject>Maturity</subject><subject>Numerical analysis</subject><subject>Shear strength</subject><subject>Soil</subject><subject>Soil lime</subject><subject>Soil stabilization</subject><subject>Soil temperature</subject><subject>Stiffness</subject><subject>Technical Papers</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>1090-0241</issn><issn>1943-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AQxxdRsFbfIehFD6m72a_Em4RahaJI43nZpDNtSpvUzRapJ9_BN_RJTGjVk6cZ5v8x8CPknNEBo4pdX95O0uHVKBuwRPBQKqoGlNJIJckB6f3eDtudJjSkkWDH5KRpFq1J0DjqkechIhQ-qDHIYLUGZ_3GQVBXgZ9DMPEOqpmfd_K4XMHXx2cKK6h8q9i8XJbvMA0ea_cGs9JWQbq02-aUHKFdNnC2n33ycjfM0vtw_DR6SG_HoeVc-1DbKeZC6jgXmGsOUiJGhcCYS1rIgifUoo4VY7nloDhymaDEKWotIdIaeZ9c7HrXrn7dQOPNot64qn1pIsVEEjMho9Z1s3MVrm4aB2jWrlxZtzWMmg6hMR1CM8pMh8t0uMweYRtWu7BtCvir_0n-H_wGKl12WA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Fiskvik Bache, Bjørn Kristian</creator><creator>Wiersholm, Pernille</creator><creator>Paniagua, Priscilla</creator><creator>Emdal, Arnfinn</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20220301</creationdate><title>Effect of Temperature on the Strength of Lime–Cement Stabilized Norwegian Clays</title><author>Fiskvik Bache, Bjørn Kristian ; Wiersholm, Pernille ; Paniagua, Priscilla ; Emdal, Arnfinn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-7adfb4578b4fb73e55ff2c4f8350c5c390af78611ba3e63f359f5fdf775e277f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Cement</topic><topic>Clay</topic><topic>Columns (structural)</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Concrete</topic><topic>Curing</topic><topic>Curing (processing)</topic><topic>Emissions</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Lime</topic><topic>Maturity</topic><topic>Numerical analysis</topic><topic>Shear strength</topic><topic>Soil</topic><topic>Soil lime</topic><topic>Soil stabilization</topic><topic>Soil temperature</topic><topic>Stiffness</topic><topic>Technical Papers</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiskvik Bache, Bjørn Kristian</creatorcontrib><creatorcontrib>Wiersholm, Pernille</creatorcontrib><creatorcontrib>Paniagua, Priscilla</creatorcontrib><creatorcontrib>Emdal, Arnfinn</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiskvik Bache, Bjørn Kristian</au><au>Wiersholm, Pernille</au><au>Paniagua, Priscilla</au><au>Emdal, Arnfinn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Temperature on the Strength of Lime–Cement Stabilized Norwegian Clays</atitle><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>148</volume><issue>3</issue><issn>1090-0241</issn><eissn>1943-5606</eissn><abstract>AbstractWhen performing soil stabilization of soft clays, the effect of temperature on the properties of the stabilized material is usually not considered. In this study, the curing temperature development and its effect on the shear strength and stiffness of lime–cement stabilized Norwegian clays was studied by field measurements, laboratory tests, and numerical analysis. The study includes 18 samples cured under different temperatures and tested by uniaxial unconfined compression (UC) tests. By increasing the curing temperature of the stabilized soil, a significantly faster strength development and higher shear strength values were observed. Monitoring the temperature in the field and introducing the maturity number allowed for the calculation of the maturity of the installed piles. In combination with laboratory results, the use of a maturity number allows to estimate shear strength and the stiffness development of the installed columns. This may allow for a higher utilization of the stabilized material, which further on can lead to reduced amount of binder or a reduction of installed columns, giving reduced costs and carbon dioxide emissions associated with the installation process.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)GT.1943-5606.0002699</doi></addata></record>
fulltext fulltext
identifier ISSN: 1090-0241
ispartof Journal of geotechnical and geoenvironmental engineering, 2022-03, Vol.148 (3)
issn 1090-0241
1943-5606
language eng
recordid cdi_proquest_journals_2614981452
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Carbon dioxide
Carbon dioxide emissions
Cement
Clay
Columns (structural)
Compression
Compression tests
Concrete
Curing
Curing (processing)
Emissions
Laboratories
Laboratory tests
Lime
Maturity
Numerical analysis
Shear strength
Soil
Soil lime
Soil stabilization
Soil temperature
Stiffness
Technical Papers
Temperature
Temperature effects
title Effect of Temperature on the Strength of Lime–Cement Stabilized Norwegian Clays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Temperature%20on%20the%20Strength%20of%20Lime%E2%80%93Cement%20Stabilized%20Norwegian%20Clays&rft.jtitle=Journal%20of%20geotechnical%20and%20geoenvironmental%20engineering&rft.au=Fiskvik%20Bache,%20Bj%C3%B8rn%20Kristian&rft.date=2022-03-01&rft.volume=148&rft.issue=3&rft.issn=1090-0241&rft.eissn=1943-5606&rft_id=info:doi/10.1061/(ASCE)GT.1943-5606.0002699&rft_dat=%3Cproquest_cross%3E2614981452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614981452&rft_id=info:pmid/&rfr_iscdi=true