Upper bounds on chromatic number of \(\mathbb{E}^n\) in low dimensions

Let \(\chi(\mathbb{E}^n)\) denote the chromatic number of the Euclidean space \(\mathbb{E}^n\), i.e., the smallest number of colors that can be used to color \(\mathbb{E}^n\) so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of \(\mathbb{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
Hauptverfasser: Arman, Andrii, Bondarenko, Andriy V, Prymak, Andriy, Radchenko, Danylo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arman, Andrii
Bondarenko, Andriy V
Prymak, Andriy
Radchenko, Danylo
description Let \(\chi(\mathbb{E}^n)\) denote the chromatic number of the Euclidean space \(\mathbb{E}^n\), i.e., the smallest number of colors that can be used to color \(\mathbb{E}^n\) so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of \(\mathbb{E}^n\) based on sublattice coloring schemes that establish the following new bounds: \(\chi(\mathbb{E}^5)\le 140\), \(\chi(\mathbb{E}^n)\le 7^{n/2}\) for \(n\in\{6,8,24\}\), \(\chi(\mathbb{E}^7)\le 1372\), \(\chi(\mathbb{E}^{9})\leq 17253\), and \(\chi(\mathbb{E}^n)\le 3^n\) for all \(n\le 38\) and \(n=48,49\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2614933878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614933878</sourcerecordid><originalsourceid>FETCH-proquest_journals_26149338783</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCy0oSC1SSMovzUspVsjPU0jOKMrPTSzJTFbIK81NAkrlpynEaMQAhTKSkqpda-PyYjQVMvMUcvLLFVIyc1PzijPz84p5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzQxNLY2MLcwpg4VQCgKTsb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614933878</pqid></control><display><type>article</type><title>Upper bounds on chromatic number of \(\mathbb{E}^n\) in low dimensions</title><source>Free E- Journals</source><creator>Arman, Andrii ; Bondarenko, Andriy V ; Prymak, Andriy ; Radchenko, Danylo</creator><creatorcontrib>Arman, Andrii ; Bondarenko, Andriy V ; Prymak, Andriy ; Radchenko, Danylo</creatorcontrib><description>Let \(\chi(\mathbb{E}^n)\) denote the chromatic number of the Euclidean space \(\mathbb{E}^n\), i.e., the smallest number of colors that can be used to color \(\mathbb{E}^n\) so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of \(\mathbb{E}^n\) based on sublattice coloring schemes that establish the following new bounds: \(\chi(\mathbb{E}^5)\le 140\), \(\chi(\mathbb{E}^n)\le 7^{n/2}\) for \(n\in\{6,8,24\}\), \(\chi(\mathbb{E}^7)\le 1372\), \(\chi(\mathbb{E}^{9})\leq 17253\), and \(\chi(\mathbb{E}^n)\le 3^n\) for all \(n\le 38\) and \(n=48,49\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Color ; Euclidean geometry ; Euclidean space ; Upper bounds</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Arman, Andrii</creatorcontrib><creatorcontrib>Bondarenko, Andriy V</creatorcontrib><creatorcontrib>Prymak, Andriy</creatorcontrib><creatorcontrib>Radchenko, Danylo</creatorcontrib><title>Upper bounds on chromatic number of \(\mathbb{E}^n\) in low dimensions</title><title>arXiv.org</title><description>Let \(\chi(\mathbb{E}^n)\) denote the chromatic number of the Euclidean space \(\mathbb{E}^n\), i.e., the smallest number of colors that can be used to color \(\mathbb{E}^n\) so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of \(\mathbb{E}^n\) based on sublattice coloring schemes that establish the following new bounds: \(\chi(\mathbb{E}^5)\le 140\), \(\chi(\mathbb{E}^n)\le 7^{n/2}\) for \(n\in\{6,8,24\}\), \(\chi(\mathbb{E}^7)\le 1372\), \(\chi(\mathbb{E}^{9})\leq 17253\), and \(\chi(\mathbb{E}^n)\le 3^n\) for all \(n\le 38\) and \(n=48,49\).</description><subject>Color</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCy0oSC1SSMovzUspVsjPU0jOKMrPTSzJTFbIK81NAkrlpynEaMQAhTKSkqpda-PyYjQVMvMUcvLLFVIyc1PzijPz84p5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzQxNLY2MLcwpg4VQCgKTsb</recordid><startdate>20220212</startdate><enddate>20220212</enddate><creator>Arman, Andrii</creator><creator>Bondarenko, Andriy V</creator><creator>Prymak, Andriy</creator><creator>Radchenko, Danylo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220212</creationdate><title>Upper bounds on chromatic number of \(\mathbb{E}^n\) in low dimensions</title><author>Arman, Andrii ; Bondarenko, Andriy V ; Prymak, Andriy ; Radchenko, Danylo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26149338783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Color</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Arman, Andrii</creatorcontrib><creatorcontrib>Bondarenko, Andriy V</creatorcontrib><creatorcontrib>Prymak, Andriy</creatorcontrib><creatorcontrib>Radchenko, Danylo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arman, Andrii</au><au>Bondarenko, Andriy V</au><au>Prymak, Andriy</au><au>Radchenko, Danylo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Upper bounds on chromatic number of \(\mathbb{E}^n\) in low dimensions</atitle><jtitle>arXiv.org</jtitle><date>2022-02-12</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Let \(\chi(\mathbb{E}^n)\) denote the chromatic number of the Euclidean space \(\mathbb{E}^n\), i.e., the smallest number of colors that can be used to color \(\mathbb{E}^n\) so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of \(\mathbb{E}^n\) based on sublattice coloring schemes that establish the following new bounds: \(\chi(\mathbb{E}^5)\le 140\), \(\chi(\mathbb{E}^n)\le 7^{n/2}\) for \(n\in\{6,8,24\}\), \(\chi(\mathbb{E}^7)\le 1372\), \(\chi(\mathbb{E}^{9})\leq 17253\), and \(\chi(\mathbb{E}^n)\le 3^n\) for all \(n\le 38\) and \(n=48,49\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2614933878
source Free E- Journals
subjects Color
Euclidean geometry
Euclidean space
Upper bounds
title Upper bounds on chromatic number of \(\mathbb{E}^n\) in low dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Upper%20bounds%20on%20chromatic%20number%20of%20%5C(%5Cmathbb%7BE%7D%5En%5C)%20in%20low%20dimensions&rft.jtitle=arXiv.org&rft.au=Arman,%20Andrii&rft.date=2022-02-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2614933878%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614933878&rft_id=info:pmid/&rfr_iscdi=true