Adversarial domain adaptation to reduce sample bias of a high energy physics event classifierAll figures and pictures by the author(s) under a CC BY 4.0 license

We apply adversarial domain adaptation in unsupervised setting to reduce sample bias in a supervised high energy physics events classifier training. We make use of a neural network containing event and domain classifier with a gradient reversal layer to simultaneously enable signal versus background...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2022-03, Vol.3 (1)
Hauptverfasser: Clavijo, J M, Glaysher, P, Jitsev, J, Katzy, J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply adversarial domain adaptation in unsupervised setting to reduce sample bias in a supervised high energy physics events classifier training. We make use of a neural network containing event and domain classifier with a gradient reversal layer to simultaneously enable signal versus background events classification on the one hand, while on the other hand minimizing the difference in response of the network to background samples originating from different Monte Carlo models via adversarial domain classification loss. We show the successful bias removal on the example of simulated events at the Large Hadron Collider with \(t\bar{t}H\) signal versus \(t\bar{t}b\bar{b}\) background classification and discuss implications and limitations of the method.
ISSN:2632-2153
DOI:10.1088/2632-2153/ac3dde