The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions

Let Ω be a bounded domain in R n with C 1 boundary and let u λ be a Dirichlet Laplace eigenfunction in Ω with eigenvalue λ . We show that the ( n - 1 ) -dimensional Hausdorff measure of the zero set of u λ does not exceed C ( Ω ) λ . This result is new even for the case of domains with C ∞ -smooth b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2021-10, Vol.31 (5), p.1219-1244
Hauptverfasser: Logunov, A., Malinnikova, E., Nadirashvili, N., Nazarov, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue 5
container_start_page 1219
container_title Geometric and functional analysis
container_volume 31
creator Logunov, A.
Malinnikova, E.
Nadirashvili, N.
Nazarov, F.
description Let Ω be a bounded domain in R n with C 1 boundary and let u λ be a Dirichlet Laplace eigenfunction in Ω with eigenvalue λ . We show that the ( n - 1 ) -dimensional Hausdorff measure of the zero set of u λ does not exceed C ( Ω ) λ . This result is new even for the case of domains with C ∞ -smooth boundary.
doi_str_mv 10.1007/s00039-021-00581-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614796943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614796943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3fcc96622b311a4e37b6b34127af978208dd6e56aa8820614e156790a8714a4a3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA6-jNu1nK-IQBNyPMLqRtOtOhNjVpF_57M1PBnav7-s65cBC6oXBHAfR9AgBuCDBKAGRBiTxBCyoYkMJoOM09UEWE4JtzdJHSPuNSCrlAm_XO47RzccDTMPiIyzD1NW5CxGO-uOgdDs2x70PtOpz8mA6bxza21a7zI165oXOVx77d-r6Z-mpsQ5-u0FnjuuSvf-sl-nh-Wi9fyer95W35sCIVp2YkvKkqoxRjJafUCc91qUouKNOuMbpgUNS18lI5V-RBUeGpVNqAKzQVTjh-iW5n3yGGr8mn0e7DFPv80rKMa6OM4JliM1XFkFL0jR1i--nit6VgDwnaOUGbE7THBK3MIj6LUob7rY9_1v-ofgDupnJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614796943</pqid></control><display><type>article</type><title>The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions</title><source>Springer Nature - Complete Springer Journals</source><creator>Logunov, A. ; Malinnikova, E. ; Nadirashvili, N. ; Nazarov, F.</creator><creatorcontrib>Logunov, A. ; Malinnikova, E. ; Nadirashvili, N. ; Nazarov, F.</creatorcontrib><description>Let Ω be a bounded domain in R n with C 1 boundary and let u λ be a Dirichlet Laplace eigenfunction in Ω with eigenvalue λ . We show that the ( n - 1 ) -dimensional Hausdorff measure of the zero set of u λ does not exceed C ( Ω ) λ . This result is new even for the case of domains with C ∞ -smooth boundary.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-021-00581-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Dirichlet problem ; Domains ; Eigenvalues ; Eigenvectors ; Mathematics ; Mathematics and Statistics ; Smooth boundaries ; Upper bounds</subject><ispartof>Geometric and functional analysis, 2021-10, Vol.31 (5), p.1219-1244</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3fcc96622b311a4e37b6b34127af978208dd6e56aa8820614e156790a8714a4a3</citedby><cites>FETCH-LOGICAL-c319t-3fcc96622b311a4e37b6b34127af978208dd6e56aa8820614e156790a8714a4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00039-021-00581-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00039-021-00581-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Logunov, A.</creatorcontrib><creatorcontrib>Malinnikova, E.</creatorcontrib><creatorcontrib>Nadirashvili, N.</creatorcontrib><creatorcontrib>Nazarov, F.</creatorcontrib><title>The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>Let Ω be a bounded domain in R n with C 1 boundary and let u λ be a Dirichlet Laplace eigenfunction in Ω with eigenvalue λ . We show that the ( n - 1 ) -dimensional Hausdorff measure of the zero set of u λ does not exceed C ( Ω ) λ . This result is new even for the case of domains with C ∞ -smooth boundary.</description><subject>Analysis</subject><subject>Dirichlet problem</subject><subject>Domains</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Smooth boundaries</subject><subject>Upper bounds</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA6-jNu1nK-IQBNyPMLqRtOtOhNjVpF_57M1PBnav7-s65cBC6oXBHAfR9AgBuCDBKAGRBiTxBCyoYkMJoOM09UEWE4JtzdJHSPuNSCrlAm_XO47RzccDTMPiIyzD1NW5CxGO-uOgdDs2x70PtOpz8mA6bxza21a7zI165oXOVx77d-r6Z-mpsQ5-u0FnjuuSvf-sl-nh-Wi9fyer95W35sCIVp2YkvKkqoxRjJafUCc91qUouKNOuMbpgUNS18lI5V-RBUeGpVNqAKzQVTjh-iW5n3yGGr8mn0e7DFPv80rKMa6OM4JliM1XFkFL0jR1i--nit6VgDwnaOUGbE7THBK3MIj6LUob7rY9_1v-ofgDupnJM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Logunov, A.</creator><creator>Malinnikova, E.</creator><creator>Nadirashvili, N.</creator><creator>Nazarov, F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions</title><author>Logunov, A. ; Malinnikova, E. ; Nadirashvili, N. ; Nazarov, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3fcc96622b311a4e37b6b34127af978208dd6e56aa8820614e156790a8714a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Dirichlet problem</topic><topic>Domains</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Smooth boundaries</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logunov, A.</creatorcontrib><creatorcontrib>Malinnikova, E.</creatorcontrib><creatorcontrib>Nadirashvili, N.</creatorcontrib><creatorcontrib>Nazarov, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logunov, A.</au><au>Malinnikova, E.</au><au>Nadirashvili, N.</au><au>Nazarov, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>1219</spage><epage>1244</epage><pages>1219-1244</pages><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>Let Ω be a bounded domain in R n with C 1 boundary and let u λ be a Dirichlet Laplace eigenfunction in Ω with eigenvalue λ . We show that the ( n - 1 ) -dimensional Hausdorff measure of the zero set of u λ does not exceed C ( Ω ) λ . This result is new even for the case of domains with C ∞ -smooth boundary.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-021-00581-5</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1016-443X
ispartof Geometric and functional analysis, 2021-10, Vol.31 (5), p.1219-1244
issn 1016-443X
1420-8970
language eng
recordid cdi_proquest_journals_2614796943
source Springer Nature - Complete Springer Journals
subjects Analysis
Dirichlet problem
Domains
Eigenvalues
Eigenvectors
Mathematics
Mathematics and Statistics
Smooth boundaries
Upper bounds
title The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sharp%20upper%20bound%20for%20the%20area%20of%20the%20nodal%20sets%20of%20Dirichlet%20Laplace%20eigenfunctions&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Logunov,%20A.&rft.date=2021-10-01&rft.volume=31&rft.issue=5&rft.spage=1219&rft.epage=1244&rft.pages=1219-1244&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-021-00581-5&rft_dat=%3Cproquest_cross%3E2614796943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614796943&rft_id=info:pmid/&rfr_iscdi=true