Singularity of discrete random matrices

Let ξ be a non-constant real-valued random variable with finite support and let M n ( ξ ) denote an n × n random matrix with entries that are independent copies of ξ . For ξ which is not uniform on its support, we show that P [ M n ( ξ ) is singular ] = P [ zero row or column ] + ( 1 + o n ( 1 ) ) P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2021-10, Vol.31 (5), p.1160-1218
Hauptverfasser: Jain, Vishesh, Sah, Ashwin, Sawhney, Mehtaab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1218
container_issue 5
container_start_page 1160
container_title Geometric and functional analysis
container_volume 31
creator Jain, Vishesh
Sah, Ashwin
Sawhney, Mehtaab
description Let ξ be a non-constant real-valued random variable with finite support and let M n ( ξ ) denote an n × n random matrix with entries that are independent copies of ξ . For ξ which is not uniform on its support, we show that P [ M n ( ξ ) is singular ] = P [ zero row or column ] + ( 1 + o n ( 1 ) ) P [ two equal (up to sign) rows or columns ] , thereby confirming a folklore conjecture. As special cases, we obtain: For ξ = Bernoulli ( p ) with fixed p ∈ ( 0 , 1 / 2 ) , P [ M n ( ξ ) is singular ] = 2 n ( 1 - p ) n + ( 1 + o n ( 1 ) ) n ( n - 1 ) ( p 2 + ( 1 - p ) 2 ) n , which determines the singularity probability to two asymptotic terms. Previously, no result of such precision was available in the study of the singularity of random matrices. The first asymptotic term confirms a conjecture of Litvak and Tikhomirov. For ξ = Bernoulli ( p ) with fixed p ∈ ( 1 / 2 , 1 ) , P [ M n ( ξ ) is singular ] = ( 1 + o n ( 1 ) ) n ( n - 1 ) ( p 2 + ( 1 - p ) 2 ) n . Previously, only the much weaker upper bound of ( p + o n ( 1 ) ) n was known due to the work of Bourgain–Vu–Wood. For ξ which is uniform on its support: We show that P [ M n ( ξ ) is singular ] = ( 1 + o n ( 1 ) ) n P [ two rows or columns are equal ] . Perhaps more importantly, we provide a sharp analysis of the contribution of the ‘compressible’ part of the unit sphere to the lower tail of the smallest singular value of M n ( ξ ) .
doi_str_mv 10.1007/s00039-021-00580-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614796884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614796884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-584d8d871fe17b342d621bbf90fcd85c45543d04f4015247106140b67dd0485b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FD56iM_nuURa_YMGDCt5C2yRLl227Ju1h_73RCt48zTA87zvwEHKJcIMA-jYBAC8pMKQA0gBVR2SBggE1pYbjvAMqKgT_OCVnKW0zLqWQC3L92vabaVfFdjwUQyhcm5roR1_EqndDV3TVGNvGp3NyEqpd8he_c0neH-7fVk90_fL4vLpb04ZjOVJphDPOaAwedc0Fc4phXYcSQuOMbET-yh2IIAAlExpBoYBaaZePRtZ8Sa7m3n0cPiefRrsdptjnl5ZlVJfKGJEpNlNNHFKKPth9bLsqHiyC_RZiZyE2C7E_QqzKIT6HUob7jY9_1f-kvgBWY2Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614796884</pqid></control><display><type>article</type><title>Singularity of discrete random matrices</title><source>SpringerNature Journals</source><creator>Jain, Vishesh ; Sah, Ashwin ; Sawhney, Mehtaab</creator><creatorcontrib>Jain, Vishesh ; Sah, Ashwin ; Sawhney, Mehtaab</creatorcontrib><description>Let ξ be a non-constant real-valued random variable with finite support and let M n ( ξ ) denote an n × n random matrix with entries that are independent copies of ξ . For ξ which is not uniform on its support, we show that P [ M n ( ξ ) is singular ] = P [ zero row or column ] + ( 1 + o n ( 1 ) ) P [ two equal (up to sign) rows or columns ] , thereby confirming a folklore conjecture. As special cases, we obtain: For ξ = Bernoulli ( p ) with fixed p ∈ ( 0 , 1 / 2 ) , P [ M n ( ξ ) is singular ] = 2 n ( 1 - p ) n + ( 1 + o n ( 1 ) ) n ( n - 1 ) ( p 2 + ( 1 - p ) 2 ) n , which determines the singularity probability to two asymptotic terms. Previously, no result of such precision was available in the study of the singularity of random matrices. The first asymptotic term confirms a conjecture of Litvak and Tikhomirov. For ξ = Bernoulli ( p ) with fixed p ∈ ( 1 / 2 , 1 ) , P [ M n ( ξ ) is singular ] = ( 1 + o n ( 1 ) ) n ( n - 1 ) ( p 2 + ( 1 - p ) 2 ) n . Previously, only the much weaker upper bound of ( p + o n ( 1 ) ) n was known due to the work of Bourgain–Vu–Wood. For ξ which is uniform on its support: We show that P [ M n ( ξ ) is singular ] = ( 1 + o n ( 1 ) ) n P [ two rows or columns are equal ] . Perhaps more importantly, we provide a sharp analysis of the contribution of the ‘compressible’ part of the unit sphere to the lower tail of the smallest singular value of M n ( ξ ) .</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-021-00580-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Asymptotic properties ; Compressibility ; Mathematics ; Mathematics and Statistics ; Random variables ; Singularities ; Upper bounds</subject><ispartof>Geometric and functional analysis, 2021-10, Vol.31 (5), p.1160-1218</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-584d8d871fe17b342d621bbf90fcd85c45543d04f4015247106140b67dd0485b3</citedby><cites>FETCH-LOGICAL-c319t-584d8d871fe17b342d621bbf90fcd85c45543d04f4015247106140b67dd0485b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00039-021-00580-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00039-021-00580-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jain, Vishesh</creatorcontrib><creatorcontrib>Sah, Ashwin</creatorcontrib><creatorcontrib>Sawhney, Mehtaab</creatorcontrib><title>Singularity of discrete random matrices</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>Let ξ be a non-constant real-valued random variable with finite support and let M n ( ξ ) denote an n × n random matrix with entries that are independent copies of ξ . For ξ which is not uniform on its support, we show that P [ M n ( ξ ) is singular ] = P [ zero row or column ] + ( 1 + o n ( 1 ) ) P [ two equal (up to sign) rows or columns ] , thereby confirming a folklore conjecture. As special cases, we obtain: For ξ = Bernoulli ( p ) with fixed p ∈ ( 0 , 1 / 2 ) , P [ M n ( ξ ) is singular ] = 2 n ( 1 - p ) n + ( 1 + o n ( 1 ) ) n ( n - 1 ) ( p 2 + ( 1 - p ) 2 ) n , which determines the singularity probability to two asymptotic terms. Previously, no result of such precision was available in the study of the singularity of random matrices. The first asymptotic term confirms a conjecture of Litvak and Tikhomirov. For ξ = Bernoulli ( p ) with fixed p ∈ ( 1 / 2 , 1 ) , P [ M n ( ξ ) is singular ] = ( 1 + o n ( 1 ) ) n ( n - 1 ) ( p 2 + ( 1 - p ) 2 ) n . Previously, only the much weaker upper bound of ( p + o n ( 1 ) ) n was known due to the work of Bourgain–Vu–Wood. For ξ which is uniform on its support: We show that P [ M n ( ξ ) is singular ] = ( 1 + o n ( 1 ) ) n P [ two rows or columns are equal ] . Perhaps more importantly, we provide a sharp analysis of the contribution of the ‘compressible’ part of the unit sphere to the lower tail of the smallest singular value of M n ( ξ ) .</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Compressibility</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random variables</subject><subject>Singularities</subject><subject>Upper bounds</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FD56iM_nuURa_YMGDCt5C2yRLl227Ju1h_73RCt48zTA87zvwEHKJcIMA-jYBAC8pMKQA0gBVR2SBggE1pYbjvAMqKgT_OCVnKW0zLqWQC3L92vabaVfFdjwUQyhcm5roR1_EqndDV3TVGNvGp3NyEqpd8he_c0neH-7fVk90_fL4vLpb04ZjOVJphDPOaAwedc0Fc4phXYcSQuOMbET-yh2IIAAlExpBoYBaaZePRtZ8Sa7m3n0cPiefRrsdptjnl5ZlVJfKGJEpNlNNHFKKPth9bLsqHiyC_RZiZyE2C7E_QqzKIT6HUob7jY9_1f-kvgBWY2Dw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jain, Vishesh</creator><creator>Sah, Ashwin</creator><creator>Sawhney, Mehtaab</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Singularity of discrete random matrices</title><author>Jain, Vishesh ; Sah, Ashwin ; Sawhney, Mehtaab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-584d8d871fe17b342d621bbf90fcd85c45543d04f4015247106140b67dd0485b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Compressibility</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random variables</topic><topic>Singularities</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Vishesh</creatorcontrib><creatorcontrib>Sah, Ashwin</creatorcontrib><creatorcontrib>Sawhney, Mehtaab</creatorcontrib><collection>CrossRef</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Vishesh</au><au>Sah, Ashwin</au><au>Sawhney, Mehtaab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularity of discrete random matrices</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>1160</spage><epage>1218</epage><pages>1160-1218</pages><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>Let ξ be a non-constant real-valued random variable with finite support and let M n ( ξ ) denote an n × n random matrix with entries that are independent copies of ξ . For ξ which is not uniform on its support, we show that P [ M n ( ξ ) is singular ] = P [ zero row or column ] + ( 1 + o n ( 1 ) ) P [ two equal (up to sign) rows or columns ] , thereby confirming a folklore conjecture. As special cases, we obtain: For ξ = Bernoulli ( p ) with fixed p ∈ ( 0 , 1 / 2 ) , P [ M n ( ξ ) is singular ] = 2 n ( 1 - p ) n + ( 1 + o n ( 1 ) ) n ( n - 1 ) ( p 2 + ( 1 - p ) 2 ) n , which determines the singularity probability to two asymptotic terms. Previously, no result of such precision was available in the study of the singularity of random matrices. The first asymptotic term confirms a conjecture of Litvak and Tikhomirov. For ξ = Bernoulli ( p ) with fixed p ∈ ( 1 / 2 , 1 ) , P [ M n ( ξ ) is singular ] = ( 1 + o n ( 1 ) ) n ( n - 1 ) ( p 2 + ( 1 - p ) 2 ) n . Previously, only the much weaker upper bound of ( p + o n ( 1 ) ) n was known due to the work of Bourgain–Vu–Wood. For ξ which is uniform on its support: We show that P [ M n ( ξ ) is singular ] = ( 1 + o n ( 1 ) ) n P [ two rows or columns are equal ] . Perhaps more importantly, we provide a sharp analysis of the contribution of the ‘compressible’ part of the unit sphere to the lower tail of the smallest singular value of M n ( ξ ) .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-021-00580-6</doi><tpages>59</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1016-443X
ispartof Geometric and functional analysis, 2021-10, Vol.31 (5), p.1160-1218
issn 1016-443X
1420-8970
language eng
recordid cdi_proquest_journals_2614796884
source SpringerNature Journals
subjects Analysis
Asymptotic properties
Compressibility
Mathematics
Mathematics and Statistics
Random variables
Singularities
Upper bounds
title Singularity of discrete random matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularity%20of%20discrete%20random%20matrices&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Jain,%20Vishesh&rft.date=2021-10-01&rft.volume=31&rft.issue=5&rft.spage=1160&rft.epage=1218&rft.pages=1160-1218&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-021-00580-6&rft_dat=%3Cproquest_cross%3E2614796884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614796884&rft_id=info:pmid/&rfr_iscdi=true