Evaluation of control-oriented flame propagation models for production control of a spark-assisted compression ignition engine
The drive to improve internal combustion engines has led to efficiency objectives that exceed the capability of conventional combustion strategies. As a result, advanced combustion modes are more attractive for production. These advanced combustion strategies typically add sensors, actuators, and de...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2022-02, Vol.236 (2-3), p.334-342 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 2-3 |
container_start_page | 334 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering |
container_volume | 236 |
creator | Robertson, Dennis Prucka, Robert |
description | The drive to improve internal combustion engines has led to efficiency objectives that exceed the capability of conventional combustion strategies. As a result, advanced combustion modes are more attractive for production. These advanced combustion strategies typically add sensors, actuators, and degrees of freedom to the combustion process. Spark-assisted compression ignition (SACI) is an efficient production-viable advanced combustion strategy characterized by spark-ignited flame propagation that triggers autoignition in the remaining unburned gas. Modeling this complex combustion process for control demands a careful selection of model structure to maximize predictive accuracy within computational constraints. This work comprehensively evaluates a physics-based and a data-driven model. The physics-based model produces a burn duration by computing laminar flame speed as a function of test point conditions. The crank-angle domain is intentionally excluded to reduce computational expense. The data-driven model is an artificial neural network (ANN). The candidate models are compared to a one-dimensional engine model validated to experimental SACI engine data. Though both models capture the trends in burn rates, the ANN model has a root-mean square error (RMSE) of 1.4 CAD, significantly lower than the 10.4 CAD RMSE of the physics-based model. The exclusion of the crank-angle domain results in insufficient detail for the physics-based model, while the ANN can tolerate this exclusion. |
doi_str_mv | 10.1177/09544070211020842 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614710532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544070211020842</sage_id><sourcerecordid>2614710532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-fbfeacc480e1bf5781a1c0dd8109e6558361d830840ebb085729f4c2eac8ce6b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz1kzadqmR1nWD1jwoueSppPStW1q0gpe_O2mW8GDmEvI5HneSYaQa2AbgCy7ZXkiBMsYB2CcScFPyIozAZTnOZyS1XxPZ-CcXHh_YGFlIlmRr92Haic1NraPrIm07UdnW2pdg_2IVWRa1WE0ODuoeqE6W2HrI2PdXK4mfaz-iHOGivyg3BtV3jd-ztC2GxyGU-Caum-OAvZ10-MlOTOq9Xj1s6_J6_3uZftI988PT9u7PdUx8JGa0qDSWkiGUJokk6BAs6qSwHJMk0TGKVQyDv9mWJZMJhnPjdA8SFJjWsZrcrPkhie_T-jH4mAn14eWBU9BZMCSmAcKFko7671DUwyu6ZT7LIAV85iLP2MOzmZxvKrxN_V_4Rv663_W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614710532</pqid></control><display><type>article</type><title>Evaluation of control-oriented flame propagation models for production control of a spark-assisted compression ignition engine</title><source>Access via SAGE</source><creator>Robertson, Dennis ; Prucka, Robert</creator><creatorcontrib>Robertson, Dennis ; Prucka, Robert</creatorcontrib><description>The drive to improve internal combustion engines has led to efficiency objectives that exceed the capability of conventional combustion strategies. As a result, advanced combustion modes are more attractive for production. These advanced combustion strategies typically add sensors, actuators, and degrees of freedom to the combustion process. Spark-assisted compression ignition (SACI) is an efficient production-viable advanced combustion strategy characterized by spark-ignited flame propagation that triggers autoignition in the remaining unburned gas. Modeling this complex combustion process for control demands a careful selection of model structure to maximize predictive accuracy within computational constraints. This work comprehensively evaluates a physics-based and a data-driven model. The physics-based model produces a burn duration by computing laminar flame speed as a function of test point conditions. The crank-angle domain is intentionally excluded to reduce computational expense. The data-driven model is an artificial neural network (ANN). The candidate models are compared to a one-dimensional engine model validated to experimental SACI engine data. Though both models capture the trends in burn rates, the ANN model has a root-mean square error (RMSE) of 1.4 CAD, significantly lower than the 10.4 CAD RMSE of the physics-based model. The exclusion of the crank-angle domain results in insufficient detail for the physics-based model, while the ANN can tolerate this exclusion.</description><identifier>ISSN: 0954-4070</identifier><identifier>EISSN: 2041-2991</identifier><identifier>DOI: 10.1177/09544070211020842</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Actuators ; Artificial neural networks ; Domains ; Flame propagation ; Flame speed ; Flames ; Internal combustion engines ; Physics ; Production controls ; Root-mean-square errors ; Spark ignition ; Spontaneous combustion</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2022-02, Vol.236 (2-3), p.334-342</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-fbfeacc480e1bf5781a1c0dd8109e6558361d830840ebb085729f4c2eac8ce6b3</citedby><cites>FETCH-LOGICAL-c312t-fbfeacc480e1bf5781a1c0dd8109e6558361d830840ebb085729f4c2eac8ce6b3</cites><orcidid>0000-0003-2115-2524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544070211020842$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544070211020842$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21824,27929,27930,43626,43627</link.rule.ids></links><search><creatorcontrib>Robertson, Dennis</creatorcontrib><creatorcontrib>Prucka, Robert</creatorcontrib><title>Evaluation of control-oriented flame propagation models for production control of a spark-assisted compression ignition engine</title><title>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</title><description>The drive to improve internal combustion engines has led to efficiency objectives that exceed the capability of conventional combustion strategies. As a result, advanced combustion modes are more attractive for production. These advanced combustion strategies typically add sensors, actuators, and degrees of freedom to the combustion process. Spark-assisted compression ignition (SACI) is an efficient production-viable advanced combustion strategy characterized by spark-ignited flame propagation that triggers autoignition in the remaining unburned gas. Modeling this complex combustion process for control demands a careful selection of model structure to maximize predictive accuracy within computational constraints. This work comprehensively evaluates a physics-based and a data-driven model. The physics-based model produces a burn duration by computing laminar flame speed as a function of test point conditions. The crank-angle domain is intentionally excluded to reduce computational expense. The data-driven model is an artificial neural network (ANN). The candidate models are compared to a one-dimensional engine model validated to experimental SACI engine data. Though both models capture the trends in burn rates, the ANN model has a root-mean square error (RMSE) of 1.4 CAD, significantly lower than the 10.4 CAD RMSE of the physics-based model. The exclusion of the crank-angle domain results in insufficient detail for the physics-based model, while the ANN can tolerate this exclusion.</description><subject>Actuators</subject><subject>Artificial neural networks</subject><subject>Domains</subject><subject>Flame propagation</subject><subject>Flame speed</subject><subject>Flames</subject><subject>Internal combustion engines</subject><subject>Physics</subject><subject>Production controls</subject><subject>Root-mean-square errors</subject><subject>Spark ignition</subject><subject>Spontaneous combustion</subject><issn>0954-4070</issn><issn>2041-2991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz1kzadqmR1nWD1jwoueSppPStW1q0gpe_O2mW8GDmEvI5HneSYaQa2AbgCy7ZXkiBMsYB2CcScFPyIozAZTnOZyS1XxPZ-CcXHh_YGFlIlmRr92Haic1NraPrIm07UdnW2pdg_2IVWRa1WE0ODuoeqE6W2HrI2PdXK4mfaz-iHOGivyg3BtV3jd-ztC2GxyGU-Caum-OAvZ10-MlOTOq9Xj1s6_J6_3uZftI988PT9u7PdUx8JGa0qDSWkiGUJokk6BAs6qSwHJMk0TGKVQyDv9mWJZMJhnPjdA8SFJjWsZrcrPkhie_T-jH4mAn14eWBU9BZMCSmAcKFko7671DUwyu6ZT7LIAV85iLP2MOzmZxvKrxN_V_4Rv663_W</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Robertson, Dennis</creator><creator>Prucka, Robert</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-2115-2524</orcidid></search><sort><creationdate>202202</creationdate><title>Evaluation of control-oriented flame propagation models for production control of a spark-assisted compression ignition engine</title><author>Robertson, Dennis ; Prucka, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-fbfeacc480e1bf5781a1c0dd8109e6558361d830840ebb085729f4c2eac8ce6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuators</topic><topic>Artificial neural networks</topic><topic>Domains</topic><topic>Flame propagation</topic><topic>Flame speed</topic><topic>Flames</topic><topic>Internal combustion engines</topic><topic>Physics</topic><topic>Production controls</topic><topic>Root-mean-square errors</topic><topic>Spark ignition</topic><topic>Spontaneous combustion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, Dennis</creatorcontrib><creatorcontrib>Prucka, Robert</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, Dennis</au><au>Prucka, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of control-oriented flame propagation models for production control of a spark-assisted compression ignition engine</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering</jtitle><date>2022-02</date><risdate>2022</risdate><volume>236</volume><issue>2-3</issue><spage>334</spage><epage>342</epage><pages>334-342</pages><issn>0954-4070</issn><eissn>2041-2991</eissn><abstract>The drive to improve internal combustion engines has led to efficiency objectives that exceed the capability of conventional combustion strategies. As a result, advanced combustion modes are more attractive for production. These advanced combustion strategies typically add sensors, actuators, and degrees of freedom to the combustion process. Spark-assisted compression ignition (SACI) is an efficient production-viable advanced combustion strategy characterized by spark-ignited flame propagation that triggers autoignition in the remaining unburned gas. Modeling this complex combustion process for control demands a careful selection of model structure to maximize predictive accuracy within computational constraints. This work comprehensively evaluates a physics-based and a data-driven model. The physics-based model produces a burn duration by computing laminar flame speed as a function of test point conditions. The crank-angle domain is intentionally excluded to reduce computational expense. The data-driven model is an artificial neural network (ANN). The candidate models are compared to a one-dimensional engine model validated to experimental SACI engine data. Though both models capture the trends in burn rates, the ANN model has a root-mean square error (RMSE) of 1.4 CAD, significantly lower than the 10.4 CAD RMSE of the physics-based model. The exclusion of the crank-angle domain results in insufficient detail for the physics-based model, while the ANN can tolerate this exclusion.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544070211020842</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2115-2524</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4070 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering, 2022-02, Vol.236 (2-3), p.334-342 |
issn | 0954-4070 2041-2991 |
language | eng |
recordid | cdi_proquest_journals_2614710532 |
source | Access via SAGE |
subjects | Actuators Artificial neural networks Domains Flame propagation Flame speed Flames Internal combustion engines Physics Production controls Root-mean-square errors Spark ignition Spontaneous combustion |
title | Evaluation of control-oriented flame propagation models for production control of a spark-assisted compression ignition engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20control-oriented%20flame%20propagation%20models%20for%20production%20control%20of%20a%20spark-assisted%20compression%20ignition%20engine&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20D,%20Journal%20of%20automobile%20engineering&rft.au=Robertson,%20Dennis&rft.date=2022-02&rft.volume=236&rft.issue=2-3&rft.spage=334&rft.epage=342&rft.pages=334-342&rft.issn=0954-4070&rft.eissn=2041-2991&rft_id=info:doi/10.1177/09544070211020842&rft_dat=%3Cproquest_cross%3E2614710532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614710532&rft_id=info:pmid/&rft_sage_id=10.1177_09544070211020842&rfr_iscdi=true |