Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization
Multiple empirical kernel learning (MEKL) is a scalable and efficient supervised algorithm based on labeled samples. However, there is still a huge amount of unlabeled samples in the real‐world application, which are not applicable for the supervised algorithm. To fully utilize the spatial distribut...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2022-02, Vol.37 (2), p.1674-1696 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!