Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization

Multiple empirical kernel learning (MEKL) is a scalable and efficient supervised algorithm based on labeled samples. However, there is still a huge amount of unlabeled samples in the real‐world application, which are not applicable for the supervised algorithm. To fully utilize the spatial distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2022-02, Vol.37 (2), p.1674-1696
Hauptverfasser: Guo, Wei, Wang, Zhe, Ma, Menghao, Chen, Lilong, Yang, Hai, Li, Dongdong, Du, Wenli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!