Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization

Multiple empirical kernel learning (MEKL) is a scalable and efficient supervised algorithm based on labeled samples. However, there is still a huge amount of unlabeled samples in the real‐world application, which are not applicable for the supervised algorithm. To fully utilize the spatial distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2022-02, Vol.37 (2), p.1674-1696
Hauptverfasser: Guo, Wei, Wang, Zhe, Ma, Menghao, Chen, Lilong, Yang, Hai, Li, Dongdong, Du, Wenli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1696
container_issue 2
container_start_page 1674
container_title International journal of intelligent systems
container_volume 37
creator Guo, Wei
Wang, Zhe
Ma, Menghao
Chen, Lilong
Yang, Hai
Li, Dongdong
Du, Wenli
description Multiple empirical kernel learning (MEKL) is a scalable and efficient supervised algorithm based on labeled samples. However, there is still a huge amount of unlabeled samples in the real‐world application, which are not applicable for the supervised algorithm. To fully utilize the spatial distribution information of the unlabeled samples, this paper proposes a novel semi‐supervised multiple empirical kernel learning (SSMEKL). SSMEKL enables multiple empirical kernel learning to achieve better classification performance with a small number of labeled samples and a large number of unlabeled samples. First, SSMEKL uses the collaborative information of multiple kernels to provide a pseudo labels to some unlabeled samples in the optimization process of the model, and SSMEKL designs pseudo‐empirical loss to transform learning process of the unlabeled samples into supervised learning. Second, SSMEKL designs the similarity regularization for unlabeled samples to make full use of the spatial information of unlabeled samples. It is required that the output of unlabeled samples should be similar to the neighboring labeled samples to improve the classification performance of the model. The proposed SSMEKL can improve the performance of the classifier by using a small number of labeled samples and numerous unlabeled samples to improve the classification performance of MEKL. In the experiment, the results on four real‐world data sets and two multiview data sets validate the effectiveness and superiority of the proposed SSMEKL.
doi_str_mv 10.1002/int.22690
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614667279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614667279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-1d6c077ce515bb9fd904a5a59579877e60301f6e2d02d605e12d8607c2a71dc43</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtMdOYicjqrhUqmCgSGyRG58UF-eCnVCViUfgGXkSAmFgYTpn-M5FPyGnDCYMgE9N1U44FynskRGDNAkYY4_7ZARJEgUJk-EhOfJ-A8CYjOIRKe-xNJ_vH75r0L0aj5qWnW1NY5Fi2RhncmXpM7oKLbWoXGWqNd2a9ok2Hjtd_1G29p6qSlNvSmOVM-2OOlx33-2bak1dHZODQlmPJ791TB6uLpezm2Bxdz2fXSyCPAw5BEyLHKTMMWbxapUWOoVIxSpOY5kmUqKAEFghkGvgWkCMjOtEgMy5kkznUTgmZ8PextUvHfo229Sdq_qTGRcsEkJymfbqfFC56z93WGSNM6Vyu4xB9p1m1qeZ_aTZ2-lgt8bi7n-YzW-Xw8QXiBd5ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614667279</pqid></control><display><type>article</type><title>Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Wei ; Wang, Zhe ; Ma, Menghao ; Chen, Lilong ; Yang, Hai ; Li, Dongdong ; Du, Wenli</creator><creatorcontrib>Guo, Wei ; Wang, Zhe ; Ma, Menghao ; Chen, Lilong ; Yang, Hai ; Li, Dongdong ; Du, Wenli</creatorcontrib><description>Multiple empirical kernel learning (MEKL) is a scalable and efficient supervised algorithm based on labeled samples. However, there is still a huge amount of unlabeled samples in the real‐world application, which are not applicable for the supervised algorithm. To fully utilize the spatial distribution information of the unlabeled samples, this paper proposes a novel semi‐supervised multiple empirical kernel learning (SSMEKL). SSMEKL enables multiple empirical kernel learning to achieve better classification performance with a small number of labeled samples and a large number of unlabeled samples. First, SSMEKL uses the collaborative information of multiple kernels to provide a pseudo labels to some unlabeled samples in the optimization process of the model, and SSMEKL designs pseudo‐empirical loss to transform learning process of the unlabeled samples into supervised learning. Second, SSMEKL designs the similarity regularization for unlabeled samples to make full use of the spatial information of unlabeled samples. It is required that the output of unlabeled samples should be similar to the neighboring labeled samples to improve the classification performance of the model. The proposed SSMEKL can improve the performance of the classifier by using a small number of labeled samples and numerous unlabeled samples to improve the classification performance of MEKL. In the experiment, the results on four real‐world data sets and two multiview data sets validate the effectiveness and superiority of the proposed SSMEKL.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22690</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; Classification ; Datasets ; Intelligent systems ; Kernels ; Machine learning ; multiple empirical kernel learning ; multiple kernel learning ; Optimization ; Performance enhancement ; Regularization ; semi‐supervised learning ; Similarity ; Spatial data ; Spatial distribution ; supervised learning</subject><ispartof>International journal of intelligent systems, 2022-02, Vol.37 (2), p.1674-1696</ispartof><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-1d6c077ce515bb9fd904a5a59579877e60301f6e2d02d605e12d8607c2a71dc43</citedby><cites>FETCH-LOGICAL-c3320-1d6c077ce515bb9fd904a5a59579877e60301f6e2d02d605e12d8607c2a71dc43</cites><orcidid>0000-0002-3977-7963 ; 0000-0002-1880-8054 ; 0000-0003-1215-7876 ; 0000-0002-1161-4337 ; 0000-0002-3759-2041 ; 0000-0002-4240-1940 ; 0000-0002-2676-6341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22690$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22690$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ma, Menghao</creatorcontrib><creatorcontrib>Chen, Lilong</creatorcontrib><creatorcontrib>Yang, Hai</creatorcontrib><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Du, Wenli</creatorcontrib><title>Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization</title><title>International journal of intelligent systems</title><description>Multiple empirical kernel learning (MEKL) is a scalable and efficient supervised algorithm based on labeled samples. However, there is still a huge amount of unlabeled samples in the real‐world application, which are not applicable for the supervised algorithm. To fully utilize the spatial distribution information of the unlabeled samples, this paper proposes a novel semi‐supervised multiple empirical kernel learning (SSMEKL). SSMEKL enables multiple empirical kernel learning to achieve better classification performance with a small number of labeled samples and a large number of unlabeled samples. First, SSMEKL uses the collaborative information of multiple kernels to provide a pseudo labels to some unlabeled samples in the optimization process of the model, and SSMEKL designs pseudo‐empirical loss to transform learning process of the unlabeled samples into supervised learning. Second, SSMEKL designs the similarity regularization for unlabeled samples to make full use of the spatial information of unlabeled samples. It is required that the output of unlabeled samples should be similar to the neighboring labeled samples to improve the classification performance of the model. The proposed SSMEKL can improve the performance of the classifier by using a small number of labeled samples and numerous unlabeled samples to improve the classification performance of MEKL. In the experiment, the results on four real‐world data sets and two multiview data sets validate the effectiveness and superiority of the proposed SSMEKL.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Intelligent systems</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>multiple empirical kernel learning</subject><subject>multiple kernel learning</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Regularization</subject><subject>semi‐supervised learning</subject><subject>Similarity</subject><subject>Spatial data</subject><subject>Spatial distribution</subject><subject>supervised learning</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtMdOYicjqrhUqmCgSGyRG58UF-eCnVCViUfgGXkSAmFgYTpn-M5FPyGnDCYMgE9N1U44FynskRGDNAkYY4_7ZARJEgUJk-EhOfJ-A8CYjOIRKe-xNJ_vH75r0L0aj5qWnW1NY5Fi2RhncmXpM7oKLbWoXGWqNd2a9ok2Hjtd_1G29p6qSlNvSmOVM-2OOlx33-2bak1dHZODQlmPJ791TB6uLpezm2Bxdz2fXSyCPAw5BEyLHKTMMWbxapUWOoVIxSpOY5kmUqKAEFghkGvgWkCMjOtEgMy5kkznUTgmZ8PextUvHfo229Sdq_qTGRcsEkJymfbqfFC56z93WGSNM6Vyu4xB9p1m1qeZ_aTZ2-lgt8bi7n-YzW-Xw8QXiBd5ew</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Guo, Wei</creator><creator>Wang, Zhe</creator><creator>Ma, Menghao</creator><creator>Chen, Lilong</creator><creator>Yang, Hai</creator><creator>Li, Dongdong</creator><creator>Du, Wenli</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3977-7963</orcidid><orcidid>https://orcid.org/0000-0002-1880-8054</orcidid><orcidid>https://orcid.org/0000-0003-1215-7876</orcidid><orcidid>https://orcid.org/0000-0002-1161-4337</orcidid><orcidid>https://orcid.org/0000-0002-3759-2041</orcidid><orcidid>https://orcid.org/0000-0002-4240-1940</orcidid><orcidid>https://orcid.org/0000-0002-2676-6341</orcidid></search><sort><creationdate>202202</creationdate><title>Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization</title><author>Guo, Wei ; Wang, Zhe ; Ma, Menghao ; Chen, Lilong ; Yang, Hai ; Li, Dongdong ; Du, Wenli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-1d6c077ce515bb9fd904a5a59579877e60301f6e2d02d605e12d8607c2a71dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Intelligent systems</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>multiple empirical kernel learning</topic><topic>multiple kernel learning</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Regularization</topic><topic>semi‐supervised learning</topic><topic>Similarity</topic><topic>Spatial data</topic><topic>Spatial distribution</topic><topic>supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ma, Menghao</creatorcontrib><creatorcontrib>Chen, Lilong</creatorcontrib><creatorcontrib>Yang, Hai</creatorcontrib><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Du, Wenli</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wei</au><au>Wang, Zhe</au><au>Ma, Menghao</au><au>Chen, Lilong</au><au>Yang, Hai</au><au>Li, Dongdong</au><au>Du, Wenli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization</atitle><jtitle>International journal of intelligent systems</jtitle><date>2022-02</date><risdate>2022</risdate><volume>37</volume><issue>2</issue><spage>1674</spage><epage>1696</epage><pages>1674-1696</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Multiple empirical kernel learning (MEKL) is a scalable and efficient supervised algorithm based on labeled samples. However, there is still a huge amount of unlabeled samples in the real‐world application, which are not applicable for the supervised algorithm. To fully utilize the spatial distribution information of the unlabeled samples, this paper proposes a novel semi‐supervised multiple empirical kernel learning (SSMEKL). SSMEKL enables multiple empirical kernel learning to achieve better classification performance with a small number of labeled samples and a large number of unlabeled samples. First, SSMEKL uses the collaborative information of multiple kernels to provide a pseudo labels to some unlabeled samples in the optimization process of the model, and SSMEKL designs pseudo‐empirical loss to transform learning process of the unlabeled samples into supervised learning. Second, SSMEKL designs the similarity regularization for unlabeled samples to make full use of the spatial information of unlabeled samples. It is required that the output of unlabeled samples should be similar to the neighboring labeled samples to improve the classification performance of the model. The proposed SSMEKL can improve the performance of the classifier by using a small number of labeled samples and numerous unlabeled samples to improve the classification performance of MEKL. In the experiment, the results on four real‐world data sets and two multiview data sets validate the effectiveness and superiority of the proposed SSMEKL.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22690</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3977-7963</orcidid><orcidid>https://orcid.org/0000-0002-1880-8054</orcidid><orcidid>https://orcid.org/0000-0003-1215-7876</orcidid><orcidid>https://orcid.org/0000-0002-1161-4337</orcidid><orcidid>https://orcid.org/0000-0002-3759-2041</orcidid><orcidid>https://orcid.org/0000-0002-4240-1940</orcidid><orcidid>https://orcid.org/0000-0002-2676-6341</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2022-02, Vol.37 (2), p.1674-1696
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2614667279
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Classification
Datasets
Intelligent systems
Kernels
Machine learning
multiple empirical kernel learning
multiple kernel learning
Optimization
Performance enhancement
Regularization
semi‐supervised learning
Similarity
Spatial data
Spatial distribution
supervised learning
title Semi‐supervised multiple empirical kernel learning with pseudo empirical loss and similarity regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi%E2%80%90supervised%20multiple%20empirical%20kernel%20learning%20with%20pseudo%20empirical%20loss%20and%20similarity%20regularization&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Guo,%20Wei&rft.date=2022-02&rft.volume=37&rft.issue=2&rft.spage=1674&rft.epage=1696&rft.pages=1674-1696&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22690&rft_dat=%3Cproquest_cross%3E2614667279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614667279&rft_id=info:pmid/&rfr_iscdi=true