Fractional-order Quadratic Time-varying Parameters Discrete Grey Model FQDGM (1, 1) and Its Application

Several objects in scientific research and engineering applications present fractional-order time-varying characteristics. When developing mathematical models of considering fractional-order time-varying, the dynamic analysis results are often inconsistent with the actual statistical data due to ina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of applied mathematics 2021-12, Vol.51 (4), p.1-6
Hauptverfasser: Yang, Xiaogao, Ding, Deqiong, Luo, Youxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 4
container_start_page 1
container_title IAENG international journal of applied mathematics
container_volume 51
creator Yang, Xiaogao
Ding, Deqiong
Luo, Youxin
description Several objects in scientific research and engineering applications present fractional-order time-varying characteristics. When developing mathematical models of considering fractional-order time-varying, the dynamic analysis results are often inconsistent with the actual statistical data due to inaccurate description of the analysis model. To solve this problem, the present paper proposes a discrete grey model of fractional-order quadratic time-varying parameters based on grey fractional-order characteristics and integral theory. By taking the minimum mean relative error and the minimum mean square error as the objective function, two optimization models, namely FQDGM-I and FQDGM-II, are constructed to perform parameter estimation. A comparative analysis based on examples shows that the background value reconstructed using the proposed model is more accurate. The fitting accuracy is greatly improved compared to those obtained using previous models. These results verify the effectiveness and practicability of the proposed fractional-order quadratic time-varying parameter discrete grey model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2614663552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614663552</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-45fb53885f294968dbe86a7f3256fcf022a69846c7515cc967e9d41c7232bf1b3</originalsourceid><addsrcrecordid>eNo9j8tKAzEARYMoWGr_IeBGwUDzTpaldWqhRQuzL5k8SmQ6MyYZoX9vi-LqntXh3BswwVoTpLUSt_8s1T2Y5RybOWOSKsXJBByrZGyJfWda1CfnE9yPxiVTooV1PHn0bdI5dkf4YZI5-eJThquYbbogXCd_hrve-RZW-9V6B5_wC8TP0HQObkqGi2FoozVX_QO4C6bNfva3U1BXr_XyDW3f15vlYosGrQpiPDT8WhaIZloo13gljAyUcBFsmBNihFZMWMkxt1YL6bVj2EpCSRNwQ6fg8Vc7pP5r9LkcPvsxXc7lAxGYCUE5J_QHCDFS3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614663552</pqid></control><display><type>article</type><title>Fractional-order Quadratic Time-varying Parameters Discrete Grey Model FQDGM (1, 1) and Its Application</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Xiaogao ; Ding, Deqiong ; Luo, Youxin</creator><creatorcontrib>Yang, Xiaogao ; Ding, Deqiong ; Luo, Youxin</creatorcontrib><description>Several objects in scientific research and engineering applications present fractional-order time-varying characteristics. When developing mathematical models of considering fractional-order time-varying, the dynamic analysis results are often inconsistent with the actual statistical data due to inaccurate description of the analysis model. To solve this problem, the present paper proposes a discrete grey model of fractional-order quadratic time-varying parameters based on grey fractional-order characteristics and integral theory. By taking the minimum mean relative error and the minimum mean square error as the objective function, two optimization models, namely FQDGM-I and FQDGM-II, are constructed to perform parameter estimation. A comparative analysis based on examples shows that the background value reconstructed using the proposed model is more accurate. The fitting accuracy is greatly improved compared to those obtained using previous models. These results verify the effectiveness and practicability of the proposed fractional-order quadratic time-varying parameter discrete grey model.</description><identifier>ISSN: 1992-9978</identifier><identifier>EISSN: 1992-9986</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Accuracy ; Mathematical models ; Mean square errors ; Optimization ; Parameter estimation</subject><ispartof>IAENG international journal of applied mathematics, 2021-12, Vol.51 (4), p.1-6</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Yang, Xiaogao</creatorcontrib><creatorcontrib>Ding, Deqiong</creatorcontrib><creatorcontrib>Luo, Youxin</creatorcontrib><title>Fractional-order Quadratic Time-varying Parameters Discrete Grey Model FQDGM (1, 1) and Its Application</title><title>IAENG international journal of applied mathematics</title><description>Several objects in scientific research and engineering applications present fractional-order time-varying characteristics. When developing mathematical models of considering fractional-order time-varying, the dynamic analysis results are often inconsistent with the actual statistical data due to inaccurate description of the analysis model. To solve this problem, the present paper proposes a discrete grey model of fractional-order quadratic time-varying parameters based on grey fractional-order characteristics and integral theory. By taking the minimum mean relative error and the minimum mean square error as the objective function, two optimization models, namely FQDGM-I and FQDGM-II, are constructed to perform parameter estimation. A comparative analysis based on examples shows that the background value reconstructed using the proposed model is more accurate. The fitting accuracy is greatly improved compared to those obtained using previous models. These results verify the effectiveness and practicability of the proposed fractional-order quadratic time-varying parameter discrete grey model.</description><subject>Accuracy</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Optimization</subject><subject>Parameter estimation</subject><issn>1992-9978</issn><issn>1992-9986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9j8tKAzEARYMoWGr_IeBGwUDzTpaldWqhRQuzL5k8SmQ6MyYZoX9vi-LqntXh3BswwVoTpLUSt_8s1T2Y5RybOWOSKsXJBByrZGyJfWda1CfnE9yPxiVTooV1PHn0bdI5dkf4YZI5-eJThquYbbogXCd_hrve-RZW-9V6B5_wC8TP0HQObkqGi2FoozVX_QO4C6bNfva3U1BXr_XyDW3f15vlYosGrQpiPDT8WhaIZloo13gljAyUcBFsmBNihFZMWMkxt1YL6bVj2EpCSRNwQ6fg8Vc7pP5r9LkcPvsxXc7lAxGYCUE5J_QHCDFS3A</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yang, Xiaogao</creator><creator>Ding, Deqiong</creator><creator>Luo, Youxin</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211201</creationdate><title>Fractional-order Quadratic Time-varying Parameters Discrete Grey Model FQDGM (1, 1) and Its Application</title><author>Yang, Xiaogao ; Ding, Deqiong ; Luo, Youxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-45fb53885f294968dbe86a7f3256fcf022a69846c7515cc967e9d41c7232bf1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Optimization</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaogao</creatorcontrib><creatorcontrib>Ding, Deqiong</creatorcontrib><creatorcontrib>Luo, Youxin</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IAENG international journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaogao</au><au>Ding, Deqiong</au><au>Luo, Youxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional-order Quadratic Time-varying Parameters Discrete Grey Model FQDGM (1, 1) and Its Application</atitle><jtitle>IAENG international journal of applied mathematics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>51</volume><issue>4</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1992-9978</issn><eissn>1992-9986</eissn><abstract>Several objects in scientific research and engineering applications present fractional-order time-varying characteristics. When developing mathematical models of considering fractional-order time-varying, the dynamic analysis results are often inconsistent with the actual statistical data due to inaccurate description of the analysis model. To solve this problem, the present paper proposes a discrete grey model of fractional-order quadratic time-varying parameters based on grey fractional-order characteristics and integral theory. By taking the minimum mean relative error and the minimum mean square error as the objective function, two optimization models, namely FQDGM-I and FQDGM-II, are constructed to perform parameter estimation. A comparative analysis based on examples shows that the background value reconstructed using the proposed model is more accurate. The fitting accuracy is greatly improved compared to those obtained using previous models. These results verify the effectiveness and practicability of the proposed fractional-order quadratic time-varying parameter discrete grey model.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1992-9978
ispartof IAENG international journal of applied mathematics, 2021-12, Vol.51 (4), p.1-6
issn 1992-9978
1992-9986
language eng
recordid cdi_proquest_journals_2614663552
source EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Mathematical models
Mean square errors
Optimization
Parameter estimation
title Fractional-order Quadratic Time-varying Parameters Discrete Grey Model FQDGM (1, 1) and Its Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional-order%20Quadratic%20Time-varying%20Parameters%20Discrete%20Grey%20Model%20FQDGM%20(1,%201)%20and%20Its%20Application&rft.jtitle=IAENG%20international%20journal%20of%20applied%20mathematics&rft.au=Yang,%20Xiaogao&rft.date=2021-12-01&rft.volume=51&rft.issue=4&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1992-9978&rft.eissn=1992-9986&rft_id=info:doi/&rft_dat=%3Cproquest%3E2614663552%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614663552&rft_id=info:pmid/&rfr_iscdi=true