FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells

Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2022-01, Vol.234, p.111406, Article 111406
Hauptverfasser: Rwaimi, Malek, Bailey, Christopher G., Shaw, Peter J., Mercier, Thomas M., Krishnan, Chirenjeevi, Rahman, Tasmiat, Lagoudakis, Pavlos G., Horng, Ray-Hua, Boden, Stuart A., Charlton, Martin D.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111406
container_title Solar energy materials and solar cells
container_volume 234
creator Rwaimi, Malek
Bailey, Christopher G.
Shaw, Peter J.
Mercier, Thomas M.
Krishnan, Chirenjeevi
Rahman, Tasmiat
Lagoudakis, Pavlos G.
Horng, Ray-Hua
Boden, Stuart A.
Charlton, Martin D.B.
description Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies. •Perovskite quantum dots utilised as a multifunctional passivation layer for GaAs solar cells.•Addition of quantum dots improved the photon collection and quantum efficiency of the GaAs solar cell.•A relative enhancement of 18% in short-circuit current density is achieved.•Luminescent downshifting contributes to enhancement of the internal quantum efficiency at shorter wavelengths.•Improved surface passivation and antireflective effects result in broadband increase of the quantum efficiency.
doi_str_mv 10.1016/j.solmat.2021.111406
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614641711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821004487</els_id><sourcerecordid>2614641711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9e18199c6e8c8c25007525bcbfe707f36d351f1a3e43308f5b4865f37b3c201d3</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVJoJPHP-hCkLWnupIf8iYwCUlaCLSLZi1k-arRxLYmuvKU_Pt6cNeFC2dzzuGej7EvILYgoP6631IcRpu3UkjYAkAp6k9sA7ppC6VafcY2opVNIWSpP7MLor0QQtaq3LD8uPvZ3SXFD5jikd5CRv4-2ynPI-9jJm6X4-M85ODnyeUQJzvwYR7DhORwykUf_0z0GnwO029-sEThaE82PtgPTNzHxJ_sjvjyok3c4TDQFTv3diC8_qeX7OXx4df9t-L5x9P3-91z4ZQWuWgRNLStq1E77WQlRFPJqnOdx0Y0XtW9qsCDVVgqJbSvulLXlVdNp5wU0KtLdrP2HlJ8n5Gy2cc5LQPIyBrKuoQGYHGVq8ulSJTQm0MKo00fBoQ58TV7s_I1J75m5bvEbtcYLguOAZMhF3By2IeELps-hv8X_AWF-4cH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614641711</pqid></control><display><type>article</type><title>FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Rwaimi, Malek ; Bailey, Christopher G. ; Shaw, Peter J. ; Mercier, Thomas M. ; Krishnan, Chirenjeevi ; Rahman, Tasmiat ; Lagoudakis, Pavlos G. ; Horng, Ray-Hua ; Boden, Stuart A. ; Charlton, Martin D.B.</creator><creatorcontrib>Rwaimi, Malek ; Bailey, Christopher G. ; Shaw, Peter J. ; Mercier, Thomas M. ; Krishnan, Chirenjeevi ; Rahman, Tasmiat ; Lagoudakis, Pavlos G. ; Horng, Ray-Hua ; Boden, Stuart A. ; Charlton, Martin D.B.</creatorcontrib><description>Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies. •Perovskite quantum dots utilised as a multifunctional passivation layer for GaAs solar cells.•Addition of quantum dots improved the photon collection and quantum efficiency of the GaAs solar cell.•A relative enhancement of 18% in short-circuit current density is achieved.•Luminescent downshifting contributes to enhancement of the internal quantum efficiency at shorter wavelengths.•Improved surface passivation and antireflective effects result in broadband increase of the quantum efficiency.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111406</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Broadband ; Circuits ; Efficiency ; Gallium arsenide ; Luminescence down shifting ; Nanocrystals ; Passivity ; Perovskite ; Perovskites ; Photons ; Photovoltaic cells ; Quantum dots ; Quantum efficiency ; Short circuit currents ; Short-circuit current ; Solar cells ; Surface chemistry ; Thin films ; Wavelengths ; Wide bandgap semiconductors</subject><ispartof>Solar energy materials and solar cells, 2022-01, Vol.234, p.111406, Article 111406</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9e18199c6e8c8c25007525bcbfe707f36d351f1a3e43308f5b4865f37b3c201d3</citedby><cites>FETCH-LOGICAL-c380t-9e18199c6e8c8c25007525bcbfe707f36d351f1a3e43308f5b4865f37b3c201d3</cites><orcidid>0000-0001-6593-1381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024821004487$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rwaimi, Malek</creatorcontrib><creatorcontrib>Bailey, Christopher G.</creatorcontrib><creatorcontrib>Shaw, Peter J.</creatorcontrib><creatorcontrib>Mercier, Thomas M.</creatorcontrib><creatorcontrib>Krishnan, Chirenjeevi</creatorcontrib><creatorcontrib>Rahman, Tasmiat</creatorcontrib><creatorcontrib>Lagoudakis, Pavlos G.</creatorcontrib><creatorcontrib>Horng, Ray-Hua</creatorcontrib><creatorcontrib>Boden, Stuart A.</creatorcontrib><creatorcontrib>Charlton, Martin D.B.</creatorcontrib><title>FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells</title><title>Solar energy materials and solar cells</title><description>Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies. •Perovskite quantum dots utilised as a multifunctional passivation layer for GaAs solar cells.•Addition of quantum dots improved the photon collection and quantum efficiency of the GaAs solar cell.•A relative enhancement of 18% in short-circuit current density is achieved.•Luminescent downshifting contributes to enhancement of the internal quantum efficiency at shorter wavelengths.•Improved surface passivation and antireflective effects result in broadband increase of the quantum efficiency.</description><subject>Absorption</subject><subject>Broadband</subject><subject>Circuits</subject><subject>Efficiency</subject><subject>Gallium arsenide</subject><subject>Luminescence down shifting</subject><subject>Nanocrystals</subject><subject>Passivity</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Quantum efficiency</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>Surface chemistry</subject><subject>Thin films</subject><subject>Wavelengths</subject><subject>Wide bandgap semiconductors</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAUhUVJoJPHP-hCkLWnupIf8iYwCUlaCLSLZi1k-arRxLYmuvKU_Pt6cNeFC2dzzuGej7EvILYgoP6631IcRpu3UkjYAkAp6k9sA7ppC6VafcY2opVNIWSpP7MLor0QQtaq3LD8uPvZ3SXFD5jikd5CRv4-2ynPI-9jJm6X4-M85ODnyeUQJzvwYR7DhORwykUf_0z0GnwO029-sEThaE82PtgPTNzHxJ_sjvjyok3c4TDQFTv3diC8_qeX7OXx4df9t-L5x9P3-91z4ZQWuWgRNLStq1E77WQlRFPJqnOdx0Y0XtW9qsCDVVgqJbSvulLXlVdNp5wU0KtLdrP2HlJ8n5Gy2cc5LQPIyBrKuoQGYHGVq8ulSJTQm0MKo00fBoQ58TV7s_I1J75m5bvEbtcYLguOAZMhF3By2IeELps-hv8X_AWF-4cH</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Rwaimi, Malek</creator><creator>Bailey, Christopher G.</creator><creator>Shaw, Peter J.</creator><creator>Mercier, Thomas M.</creator><creator>Krishnan, Chirenjeevi</creator><creator>Rahman, Tasmiat</creator><creator>Lagoudakis, Pavlos G.</creator><creator>Horng, Ray-Hua</creator><creator>Boden, Stuart A.</creator><creator>Charlton, Martin D.B.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6593-1381</orcidid></search><sort><creationdate>202201</creationdate><title>FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells</title><author>Rwaimi, Malek ; Bailey, Christopher G. ; Shaw, Peter J. ; Mercier, Thomas M. ; Krishnan, Chirenjeevi ; Rahman, Tasmiat ; Lagoudakis, Pavlos G. ; Horng, Ray-Hua ; Boden, Stuart A. ; Charlton, Martin D.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9e18199c6e8c8c25007525bcbfe707f36d351f1a3e43308f5b4865f37b3c201d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Broadband</topic><topic>Circuits</topic><topic>Efficiency</topic><topic>Gallium arsenide</topic><topic>Luminescence down shifting</topic><topic>Nanocrystals</topic><topic>Passivity</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Quantum efficiency</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>Surface chemistry</topic><topic>Thin films</topic><topic>Wavelengths</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rwaimi, Malek</creatorcontrib><creatorcontrib>Bailey, Christopher G.</creatorcontrib><creatorcontrib>Shaw, Peter J.</creatorcontrib><creatorcontrib>Mercier, Thomas M.</creatorcontrib><creatorcontrib>Krishnan, Chirenjeevi</creatorcontrib><creatorcontrib>Rahman, Tasmiat</creatorcontrib><creatorcontrib>Lagoudakis, Pavlos G.</creatorcontrib><creatorcontrib>Horng, Ray-Hua</creatorcontrib><creatorcontrib>Boden, Stuart A.</creatorcontrib><creatorcontrib>Charlton, Martin D.B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rwaimi, Malek</au><au>Bailey, Christopher G.</au><au>Shaw, Peter J.</au><au>Mercier, Thomas M.</au><au>Krishnan, Chirenjeevi</au><au>Rahman, Tasmiat</au><au>Lagoudakis, Pavlos G.</au><au>Horng, Ray-Hua</au><au>Boden, Stuart A.</au><au>Charlton, Martin D.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-01</date><risdate>2022</risdate><volume>234</volume><spage>111406</spage><pages>111406-</pages><artnum>111406</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies. •Perovskite quantum dots utilised as a multifunctional passivation layer for GaAs solar cells.•Addition of quantum dots improved the photon collection and quantum efficiency of the GaAs solar cell.•A relative enhancement of 18% in short-circuit current density is achieved.•Luminescent downshifting contributes to enhancement of the internal quantum efficiency at shorter wavelengths.•Improved surface passivation and antireflective effects result in broadband increase of the quantum efficiency.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111406</doi><orcidid>https://orcid.org/0000-0001-6593-1381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2022-01, Vol.234, p.111406, Article 111406
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2614641711
source Elsevier ScienceDirect Journals
subjects Absorption
Broadband
Circuits
Efficiency
Gallium arsenide
Luminescence down shifting
Nanocrystals
Passivity
Perovskite
Perovskites
Photons
Photovoltaic cells
Quantum dots
Quantum efficiency
Short circuit currents
Short-circuit current
Solar cells
Surface chemistry
Thin films
Wavelengths
Wide bandgap semiconductors
title FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAPbBr3%20perovskite%20quantum%20dots%20as%20a%20multifunctional%20luminescent-downshifting%20passivation%20layer%20for%20GaAs%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Rwaimi,%20Malek&rft.date=2022-01&rft.volume=234&rft.spage=111406&rft.pages=111406-&rft.artnum=111406&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111406&rft_dat=%3Cproquest_cross%3E2614641711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614641711&rft_id=info:pmid/&rft_els_id=S0927024821004487&rfr_iscdi=true