FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells
Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum d...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2022-01, Vol.234, p.111406, Article 111406 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111406 |
container_title | Solar energy materials and solar cells |
container_volume | 234 |
creator | Rwaimi, Malek Bailey, Christopher G. Shaw, Peter J. Mercier, Thomas M. Krishnan, Chirenjeevi Rahman, Tasmiat Lagoudakis, Pavlos G. Horng, Ray-Hua Boden, Stuart A. Charlton, Martin D.B. |
description | Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies.
•Perovskite quantum dots utilised as a multifunctional passivation layer for GaAs solar cells.•Addition of quantum dots improved the photon collection and quantum efficiency of the GaAs solar cell.•A relative enhancement of 18% in short-circuit current density is achieved.•Luminescent downshifting contributes to enhancement of the internal quantum efficiency at shorter wavelengths.•Improved surface passivation and antireflective effects result in broadband increase of the quantum efficiency. |
doi_str_mv | 10.1016/j.solmat.2021.111406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614641711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821004487</els_id><sourcerecordid>2614641711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9e18199c6e8c8c25007525bcbfe707f36d351f1a3e43308f5b4865f37b3c201d3</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVJoJPHP-hCkLWnupIf8iYwCUlaCLSLZi1k-arRxLYmuvKU_Pt6cNeFC2dzzuGej7EvILYgoP6631IcRpu3UkjYAkAp6k9sA7ppC6VafcY2opVNIWSpP7MLor0QQtaq3LD8uPvZ3SXFD5jikd5CRv4-2ynPI-9jJm6X4-M85ODnyeUQJzvwYR7DhORwykUf_0z0GnwO029-sEThaE82PtgPTNzHxJ_sjvjyok3c4TDQFTv3diC8_qeX7OXx4df9t-L5x9P3-91z4ZQWuWgRNLStq1E77WQlRFPJqnOdx0Y0XtW9qsCDVVgqJbSvulLXlVdNp5wU0KtLdrP2HlJ8n5Gy2cc5LQPIyBrKuoQGYHGVq8ulSJTQm0MKo00fBoQ58TV7s_I1J75m5bvEbtcYLguOAZMhF3By2IeELps-hv8X_AWF-4cH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614641711</pqid></control><display><type>article</type><title>FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Rwaimi, Malek ; Bailey, Christopher G. ; Shaw, Peter J. ; Mercier, Thomas M. ; Krishnan, Chirenjeevi ; Rahman, Tasmiat ; Lagoudakis, Pavlos G. ; Horng, Ray-Hua ; Boden, Stuart A. ; Charlton, Martin D.B.</creator><creatorcontrib>Rwaimi, Malek ; Bailey, Christopher G. ; Shaw, Peter J. ; Mercier, Thomas M. ; Krishnan, Chirenjeevi ; Rahman, Tasmiat ; Lagoudakis, Pavlos G. ; Horng, Ray-Hua ; Boden, Stuart A. ; Charlton, Martin D.B.</creatorcontrib><description>Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies.
•Perovskite quantum dots utilised as a multifunctional passivation layer for GaAs solar cells.•Addition of quantum dots improved the photon collection and quantum efficiency of the GaAs solar cell.•A relative enhancement of 18% in short-circuit current density is achieved.•Luminescent downshifting contributes to enhancement of the internal quantum efficiency at shorter wavelengths.•Improved surface passivation and antireflective effects result in broadband increase of the quantum efficiency.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111406</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Broadband ; Circuits ; Efficiency ; Gallium arsenide ; Luminescence down shifting ; Nanocrystals ; Passivity ; Perovskite ; Perovskites ; Photons ; Photovoltaic cells ; Quantum dots ; Quantum efficiency ; Short circuit currents ; Short-circuit current ; Solar cells ; Surface chemistry ; Thin films ; Wavelengths ; Wide bandgap semiconductors</subject><ispartof>Solar energy materials and solar cells, 2022-01, Vol.234, p.111406, Article 111406</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9e18199c6e8c8c25007525bcbfe707f36d351f1a3e43308f5b4865f37b3c201d3</citedby><cites>FETCH-LOGICAL-c380t-9e18199c6e8c8c25007525bcbfe707f36d351f1a3e43308f5b4865f37b3c201d3</cites><orcidid>0000-0001-6593-1381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024821004487$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rwaimi, Malek</creatorcontrib><creatorcontrib>Bailey, Christopher G.</creatorcontrib><creatorcontrib>Shaw, Peter J.</creatorcontrib><creatorcontrib>Mercier, Thomas M.</creatorcontrib><creatorcontrib>Krishnan, Chirenjeevi</creatorcontrib><creatorcontrib>Rahman, Tasmiat</creatorcontrib><creatorcontrib>Lagoudakis, Pavlos G.</creatorcontrib><creatorcontrib>Horng, Ray-Hua</creatorcontrib><creatorcontrib>Boden, Stuart A.</creatorcontrib><creatorcontrib>Charlton, Martin D.B.</creatorcontrib><title>FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells</title><title>Solar energy materials and solar cells</title><description>Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies.
•Perovskite quantum dots utilised as a multifunctional passivation layer for GaAs solar cells.•Addition of quantum dots improved the photon collection and quantum efficiency of the GaAs solar cell.•A relative enhancement of 18% in short-circuit current density is achieved.•Luminescent downshifting contributes to enhancement of the internal quantum efficiency at shorter wavelengths.•Improved surface passivation and antireflective effects result in broadband increase of the quantum efficiency.</description><subject>Absorption</subject><subject>Broadband</subject><subject>Circuits</subject><subject>Efficiency</subject><subject>Gallium arsenide</subject><subject>Luminescence down shifting</subject><subject>Nanocrystals</subject><subject>Passivity</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Quantum efficiency</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>Surface chemistry</subject><subject>Thin films</subject><subject>Wavelengths</subject><subject>Wide bandgap semiconductors</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAUhUVJoJPHP-hCkLWnupIf8iYwCUlaCLSLZi1k-arRxLYmuvKU_Pt6cNeFC2dzzuGej7EvILYgoP6631IcRpu3UkjYAkAp6k9sA7ppC6VafcY2opVNIWSpP7MLor0QQtaq3LD8uPvZ3SXFD5jikd5CRv4-2ynPI-9jJm6X4-M85ODnyeUQJzvwYR7DhORwykUf_0z0GnwO029-sEThaE82PtgPTNzHxJ_sjvjyok3c4TDQFTv3diC8_qeX7OXx4df9t-L5x9P3-91z4ZQWuWgRNLStq1E77WQlRFPJqnOdx0Y0XtW9qsCDVVgqJbSvulLXlVdNp5wU0KtLdrP2HlJ8n5Gy2cc5LQPIyBrKuoQGYHGVq8ulSJTQm0MKo00fBoQ58TV7s_I1J75m5bvEbtcYLguOAZMhF3By2IeELps-hv8X_AWF-4cH</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Rwaimi, Malek</creator><creator>Bailey, Christopher G.</creator><creator>Shaw, Peter J.</creator><creator>Mercier, Thomas M.</creator><creator>Krishnan, Chirenjeevi</creator><creator>Rahman, Tasmiat</creator><creator>Lagoudakis, Pavlos G.</creator><creator>Horng, Ray-Hua</creator><creator>Boden, Stuart A.</creator><creator>Charlton, Martin D.B.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6593-1381</orcidid></search><sort><creationdate>202201</creationdate><title>FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells</title><author>Rwaimi, Malek ; Bailey, Christopher G. ; Shaw, Peter J. ; Mercier, Thomas M. ; Krishnan, Chirenjeevi ; Rahman, Tasmiat ; Lagoudakis, Pavlos G. ; Horng, Ray-Hua ; Boden, Stuart A. ; Charlton, Martin D.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9e18199c6e8c8c25007525bcbfe707f36d351f1a3e43308f5b4865f37b3c201d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Broadband</topic><topic>Circuits</topic><topic>Efficiency</topic><topic>Gallium arsenide</topic><topic>Luminescence down shifting</topic><topic>Nanocrystals</topic><topic>Passivity</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Quantum efficiency</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>Surface chemistry</topic><topic>Thin films</topic><topic>Wavelengths</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rwaimi, Malek</creatorcontrib><creatorcontrib>Bailey, Christopher G.</creatorcontrib><creatorcontrib>Shaw, Peter J.</creatorcontrib><creatorcontrib>Mercier, Thomas M.</creatorcontrib><creatorcontrib>Krishnan, Chirenjeevi</creatorcontrib><creatorcontrib>Rahman, Tasmiat</creatorcontrib><creatorcontrib>Lagoudakis, Pavlos G.</creatorcontrib><creatorcontrib>Horng, Ray-Hua</creatorcontrib><creatorcontrib>Boden, Stuart A.</creatorcontrib><creatorcontrib>Charlton, Martin D.B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rwaimi, Malek</au><au>Bailey, Christopher G.</au><au>Shaw, Peter J.</au><au>Mercier, Thomas M.</au><au>Krishnan, Chirenjeevi</au><au>Rahman, Tasmiat</au><au>Lagoudakis, Pavlos G.</au><au>Horng, Ray-Hua</au><au>Boden, Stuart A.</au><au>Charlton, Martin D.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-01</date><risdate>2022</risdate><volume>234</volume><spage>111406</spage><pages>111406-</pages><artnum>111406</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies.
•Perovskite quantum dots utilised as a multifunctional passivation layer for GaAs solar cells.•Addition of quantum dots improved the photon collection and quantum efficiency of the GaAs solar cell.•A relative enhancement of 18% in short-circuit current density is achieved.•Luminescent downshifting contributes to enhancement of the internal quantum efficiency at shorter wavelengths.•Improved surface passivation and antireflective effects result in broadband increase of the quantum efficiency.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111406</doi><orcidid>https://orcid.org/0000-0001-6593-1381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2022-01, Vol.234, p.111406, Article 111406 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2614641711 |
source | Elsevier ScienceDirect Journals |
subjects | Absorption Broadband Circuits Efficiency Gallium arsenide Luminescence down shifting Nanocrystals Passivity Perovskite Perovskites Photons Photovoltaic cells Quantum dots Quantum efficiency Short circuit currents Short-circuit current Solar cells Surface chemistry Thin films Wavelengths Wide bandgap semiconductors |
title | FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAPbBr3%20perovskite%20quantum%20dots%20as%20a%20multifunctional%20luminescent-downshifting%20passivation%20layer%20for%20GaAs%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Rwaimi,%20Malek&rft.date=2022-01&rft.volume=234&rft.spage=111406&rft.pages=111406-&rft.artnum=111406&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111406&rft_dat=%3Cproquest_cross%3E2614641711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614641711&rft_id=info:pmid/&rft_els_id=S0927024821004487&rfr_iscdi=true |